The Sudanian-Sahelian zone of the Far-North Cameroon faces an extreme climate challenge resulting in increased vulnerability to erosion, soil degradation, and the effects of climate change, impacting soil fertility an...The Sudanian-Sahelian zone of the Far-North Cameroon faces an extreme climate challenge resulting in increased vulnerability to erosion, soil degradation, and the effects of climate change, impacting soil fertility and agricultural yields. The objective of this study was to analyze agricultural practices, challenges related to climate change and soil degradation, as well as the solutions adopted by farmers to address these issues. To achieve this, 600 farmers from the six departments of the region were interviewed. The results highlight the significant impact of climatic conditions on soil health, agricultural activities, and food security. Farmers identified various indicators of soil degradation, including agricultural yields, bioindicator plants, plant growth, soil fauna, and root density. The main causes of soil degradation are associated with practices such as deforestation, intensive agriculture, the use of chemical fertilizers and pesticides, overgrazing, and the effects of climate change. The impacts of this degradation are multiple, including soil fertility loss, reduced agricultural yields, deforestation, reduced biodiversity, income loss, water resource pollution, and food insecurity. In response to these challenges, farmers have adopted sustainable soil management practices, including crop rotation, intercropping, fallowing, the use of organic fertilizers, and the adoption of conservation agriculture. To effectively address these challenges, concerted collaboration between farmers, civil society organizations, and government authorities is imperative to develop sustainable and effective solutions against soil degradation in the region.展开更多
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-...This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.展开更多
Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion proced...Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion procedure. The total contents of Cu and Pb in the different particle size fractions of the urban soils were analyzed by HNO3-HF-HClO4 digestion and flame atomic absorption spectrophotometer determination. The total content of Cu and Pb in soil particle size fractions varied with their size and with city zones as well. Both the content and variation with the size fractions of Pb was bigger than of Cu supporting our previous finding that there was Pb pollution to different degrees in the urban soils although the two elements were generally enriched in clay-sized fraction. Contaminated Pb tended to be preferentially enriched in the size fraction of 2000-250 μm and clay-sized fraction. While the size fractions of the soils from newly developed and preserved area contained smaller amount of Cu and Pb, the partitioning of them in coarse and fine particle size fractions were insignificant compared to that from inner residence and commercial area. The very high Pb level over 150 mg/kg of the fine particle fractions from the soils of the inner city could be a cause of high blood Pb level reported of children from the city as acute exposure to Pb of fine particles of the urban soil might occur by soil ingestion and inhalation by young children. Thus, much attention should be paid to the partitioning of toxic metals in fine soil particles of the urban soils and countermeasures against high health risk of Pb exposure by soil ingestion and dust inhalation should be practiced against the health problem of blood Pb for young children from the cities.展开更多
The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctua...The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,展开更多
A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device...A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device to assess the spatial variability and temporal stability of the distribution of soil electrical conductivity (EC), to identify the management zones using cluster analysis based on the spatiotemporal variability of soil EC, and to evaluate the probable potential for site-specific management in coastal regions with conventional statistics and geostatistical techniques. The results indicated high coefficients of variation for topsoil salinity over all the three samplings. The spatial structure of the salinity variability remained relatively stable with time. Kriged contour maps, drawn on the basis of spatial variance structure of the data, showed the spatial trend of the salinity distribution and revealed areas of consistently high or consistently low salinity, while a temporal stability map indicated stable and unstable regions. On the basis of the spatiotemporal characteristics, cluster analysis divided the site into three potential management zones, each with different characteristics that could have an impact on the way the field was managed. On the basis of the clearly defined management zones it was concluded that coastal saline land could be managed in a site-specific way.展开更多
Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for sce...Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for scenario analysis of cropping system models has been increasing. The capability of CropSyst, a cropping system simulation model, to simulate spring wheat growth of a widely grown spring cultivar, 'Longmai 19', in the black soil zone in northeast China under different water and nitrogen regimes was evaluated. Field data collected from a rotation experiment of three growing seasons (1992-1994) were used to calibrate and validate the model. The model was run for 3 years by providing initial conditions at the beginning of the rotation without reinitializing the model in later years in the rotation sequence. Crop input parameters were set based on measured data or taken from CropSyst manual. A few cultivar-specific parameters were adjusted within a reasonable range of fluctuation. The results demonstrated the robustness of CropSyst for simulating evapotranspiration, aboveground biomass, and grain yield of 'Longmai 19' spring wheat with the root mean square errors being 7%, 13% and 13% of the observed means for evapotranspiration (ET), grain yield and aboveground biomass, respectively. Although CropSyst was able to simulate spring production reasonably well, further evaluation and improvement of the model with a more detailed field database was desirable for agricultural systems in northeast China.展开更多
In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The pr...In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.展开更多
This study aims to investigate the correlation between the permeation effect and microfabric of the slip zone soils with Huangtupo landslide in the Three Gorges Reservoir as the study case. Based on the permeability t...This study aims to investigate the correlation between the permeation effect and microfabric of the slip zone soils with Huangtupo landslide in the Three Gorges Reservoir as the study case. Based on the permeability test and scanning electron microscope(SEM) images analysis, the fractal theory and probability entropy are used to quantify the characteristics of the remodeling specimens. First, the relationships between initial moisture content(IMC) and microstructure of the soil(percentage of particle area(PPA), pore roundness(Rp)) before and after permeability test are summarized. Then, the fractal dimension of the soil(pore distribution(Dpd), pore size(Dps)) are analyzed under the permeation effect. Based on the probability entropy, the entropy of pore(Ep) is used to characterize the porosity orientation, and the rose diagrams are used to show the particle orientation under the permeation effect. Finally, the relationship between the microstructure of the soil and its mechanical property is discussed. Results show that under the permeation effect, the microstructure of the soil has undergone tremendous changes. A flat long pore channel is formed. The order of the pore arrangement is enhanced, and soil particles switch the long axis to parallel infiltration direction to reach a new steady state. It can be inferred that the strength of soil would be weakened if the fractal dimension of soil pore decreases under any external environment.展开更多
Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of he...Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of herbaceous species roots on soil anti-scourability during different growth stages and under different degrees of inundation in this zone.This study sampled two typical grasslands(Hemarthria compressa grassland and Xanthium sibiricum grassland)at two elevations(172 and 165 m a.s.l.)in the water level fluctuation zone(WLFZ)in the Three Gorges Reservoir(TGR)of China to quantify the changes in soil and root properties and their effects on soil anti-scourability.A simulated scouring experiment was conducted to test the soil anti-scourability in April and August of 2018.The results showed that the discrepancy in inundation duration and predominant herbaceous species was associated with a difference in root biomass between the two grasslands.The root weight density(RWD)values in the topsoil(0-10 cm)ranged from 7.31 to 13 mg cm^(-3) for the Hemarthria compressa grassland,while smaller values ranging from 0.48 to 8.61 mg cm^(-3) were observed for the Xanthium sibiricum grassland.In addition,the root biomass of the two herbs was significantly greater at 172 m a.s.l.than that at 165 m a.s.l.in the early recovery growth period(April).Both herbs can effectively improve the soil properties;the organic matter contents of the grasslands were 128.06%to 191.99%higher than that in the bare land(CK),while the increase in the water-stable aggregate ranged from 8.21%to 18.56%.Similarly,the topsoil antiscourability indices in both the herbaceous grasslands were larger than those in the CK.The correlation coefficients between the root length density(RLD),root surface area density(RSAD)and root volume density(RVD)of fine roots and the soil antiscourability index were 0.501,0.776 and 0.936,respectively.Moreover,the change in the soil antiscourability index was more sensitive to alternations in the RLD with diameters less than 0.5 mm.Overall,the present study showed that the perennial herbaceous(H.compressa)has great potential as a countermeasure to reduce or mitigate the impact of erosion in the WLFZ of the Three Gorges Reservoir.展开更多
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o...Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.展开更多
The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this pape...The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this paper are placed along the southern slope of Funiu Mountain at different heights above sea level. Many compositions and properties of these soils have been determined in laboratory. In this paper, the laws of migration and accumulation of soil materials on the southern slope of Funiu Mountain are discussed first, then the division of the boundary between subtropical zone and temperate zone in this area according to soil geochemistry is discussed with qualitative methods and mathematical classification method in which twelve selected indexes such as K m , Saf, Ba, β, Feo/Fet, Mno/Mnt and so on are used. The result indicates that the boundary between subtropical zone and temperate zone on the southern slope of Funiu Mountain is about 950 m above sea level.展开更多
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank...Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.展开更多
Soil heavy metal pollution is one of the main environmental problems in Pearl River Delta Economic?Zone of China. Based on multi-purpose regional geochemical survey, regional eco-geochemical assessment, local eco-geoc...Soil heavy metal pollution is one of the main environmental problems in Pearl River Delta Economic?Zone of China. Based on multi-purpose regional geochemical survey, regional eco-geochemical assessment, local eco-geochemical assessment and comprehensive appraisal, the eco-geochemical survey and assessment in Pearl River Delta Economic Zone of 41,698 km2?were completed. Samples from soils were collected in accordance with the two-layer grid method. Totally 54 elements and indicators for soils were determined. Compared to deep soils, the sampled surface soils are enriched in OrgC, N, P, Cd, S,Hg, Ag, B, Au, S and poor with As, Ni, I, Co, Cr, V, MgO, Sc, Al2O3, Fe2O3?etc. The characteristics of geochemical reference value of element in soil that inherited soil parent material and regional elements combined features reflected that the elements enriched in the soil was interrelated with acid rock, sandstone and shale. The spatial distribution characteristics of element regional geochemistry were conditional by regional environmental geological conditions,and effected by human activities. The Pearl River Delta plain is a typical geochemical landscape area with regional anomaly of multiple-elements. The north, western and eastern parts of the Pearl River Delta Economic Zone are quite different in geochemical features due to regional geological background, soil parent materials, geomorphic characteristics and human activities. Environment quality evaluation results show that the grade I and grade II soil accounted for 19.9% and 57.3% of the total area. Many samples that widely distributed in the economic developed of Pearl River Delta Plain area reached the third-grade of national soil environment standard. The soil enriched in Cd, Hg, As, and the area ratio accounting for 22.8% of the total area. It is mainly controlled by the geochemical background, the Pearl River Delta formation evolution process, especially the marine transgression process lead to Cd, Cu, Zn and Pb enrichment in Pearl River Delta plain. At the same time, under the influence of higher pressure of human activities, all kinds of exogenous input material carrying heavy metal pollutants on soil environmental quality also could not to ignore.展开更多
The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shr...The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. duraosura shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. duraosura in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment.展开更多
Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moist...Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moisture within crop’s root zone and its linkage to the amount of water applied is very important as it assists in optimising the efficient use of water and reducing yield losses. The study aimed at evaluating the spatial redistribution of soil moisture within maize roots zone under different irrigation water application regimes. The study was conducted during two irrigatation seasons of 2012 at Nkango Irrigation Scheme, Malawi. The trials consisted of factorial arrangement in a Randomised Complete Block Design (RCBD). The factors were water and nitrogen and both were at four levels. The Triscan Sensor was used to measure volumetric soil moisture contents at different vertical and lateral points. The study inferred that the degree of soil moisture loss depends on the amount of water present in the soil. The rate of soil moisture loss in 100% of full water requirement regime (100% FWRR) treatment was higher than that in 40% FWRR treatment. This was particularly noticed when maize leaves were dry. In 100% FWRR treatment, the attraction between water and the surfaces of soil particles was not tight and as such “free” water was lost through evaporation and deep percolation, while in 40% FWRR, water was strongly attracted to and held on the soil particles surfaces and as such its potential of losing water was reduced.展开更多
In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants ba...In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants based on Hakanson Potential Ecological Risk Indexes. According to the results, Hg was the primary heavy metal pollutant in Blue Economic Zone, followed by Cd, Cu, and Pb as prevalent pollutants. Heavy metals ranked in order of their pollution degrees are: Hg>Cd>Cu>Pb>Zn>Cr>As;the potential ecological risks of heavy metals follow the order of Hg>Cd>As>Pb>Cu>Cr>Zn. Heavy metal pollutions did exist in this region to a certain extent, and the percentage of potential ecological risk in “strong” and “severe” degree reached up to 13.75%. This composite risk characteristic was subject to the restriction of Hg and Cd mainly distributed in Laizhou-Zhaoyuan- Yantai, Muping-Rushan Goldmine, and other densely-populated regions, threatening the safety production of crops. The combined effects of geological background and human activities, e.g. gold mining and domestic pollutants, were the main causes of high potential ecological risks of heavy metals in local environment.展开更多
Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on grou...Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.展开更多
The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the i...The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the influence,25 of the issues which considered to be the most important were screened,including"How many people can the Earth carry?"(Stokstad,2005;Dailyg et al.,1992;Cohen,1995)and"How high will the greenhouse effect make the earth temperature?展开更多
The studied agriculture\|pasture interlacing zone has its specific natural conditions, at which the natural systems are unstable, their self\|regulation capability is low and the equilibrium is easily broken, and henc...The studied agriculture\|pasture interlacing zone has its specific natural conditions, at which the natural systems are unstable, their self\|regulation capability is low and the equilibrium is easily broken, and hence the habitat is fairly vulnerable. During last 20 years the increasing population and livestock, over\|reclamation, over\|pasturing, over\|deforesting, and other intensified negative human activities in the zone resulted in coarsening of surface soil, decrease of organic mater content in soil, reduction of vegetation coverage, variation and degradation of flora structure, and hence in desertization of the land, although average of gales and sandstorms some decreased and the climate tended to be better in the region. However, the frequent sandstorms occurring in the springs of last and present years has attracted much attention. Investigations confirmed that the main cause for the phenomena is the unreasonable human activities rather than the natural factors.展开更多
Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed t...Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.展开更多
文摘The Sudanian-Sahelian zone of the Far-North Cameroon faces an extreme climate challenge resulting in increased vulnerability to erosion, soil degradation, and the effects of climate change, impacting soil fertility and agricultural yields. The objective of this study was to analyze agricultural practices, challenges related to climate change and soil degradation, as well as the solutions adopted by farmers to address these issues. To achieve this, 600 farmers from the six departments of the region were interviewed. The results highlight the significant impact of climatic conditions on soil health, agricultural activities, and food security. Farmers identified various indicators of soil degradation, including agricultural yields, bioindicator plants, plant growth, soil fauna, and root density. The main causes of soil degradation are associated with practices such as deforestation, intensive agriculture, the use of chemical fertilizers and pesticides, overgrazing, and the effects of climate change. The impacts of this degradation are multiple, including soil fertility loss, reduced agricultural yields, deforestation, reduced biodiversity, income loss, water resource pollution, and food insecurity. In response to these challenges, farmers have adopted sustainable soil management practices, including crop rotation, intercropping, fallowing, the use of organic fertilizers, and the adoption of conservation agriculture. To effectively address these challenges, concerted collaboration between farmers, civil society organizations, and government authorities is imperative to develop sustainable and effective solutions against soil degradation in the region.
文摘This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere.
基金The Key Research Project of Ministry of Education of China(No. 2002012)
文摘Soil samples from 4 defined city zones of Nanjing were randomly collected at 0-5 cm and 5-20 cm intervals and size fractions of soil particles were separated from undisturbed bulk soils by low energy dispersion procedure. The total contents of Cu and Pb in the different particle size fractions of the urban soils were analyzed by HNO3-HF-HClO4 digestion and flame atomic absorption spectrophotometer determination. The total content of Cu and Pb in soil particle size fractions varied with their size and with city zones as well. Both the content and variation with the size fractions of Pb was bigger than of Cu supporting our previous finding that there was Pb pollution to different degrees in the urban soils although the two elements were generally enriched in clay-sized fraction. Contaminated Pb tended to be preferentially enriched in the size fraction of 2000-250 μm and clay-sized fraction. While the size fractions of the soils from newly developed and preserved area contained smaller amount of Cu and Pb, the partitioning of them in coarse and fine particle size fractions were insignificant compared to that from inner residence and commercial area. The very high Pb level over 150 mg/kg of the fine particle fractions from the soils of the inner city could be a cause of high blood Pb level reported of children from the city as acute exposure to Pb of fine particles of the urban soil might occur by soil ingestion and inhalation by young children. Thus, much attention should be paid to the partitioning of toxic metals in fine soil particles of the urban soils and countermeasures against high health risk of Pb exposure by soil ingestion and dust inhalation should be practiced against the health problem of blood Pb for young children from the cities.
基金Supported by the National Natural Science Foundation of China (50879044)Master's Degree Thesis Excellent Training Funds of Three Gorges University(2011PY008)
文摘The mechanical behavior of sliding zone soils plays a significant role in landslide. In general, the sliding zone soils are basically in unsaturated state due to rainfall infiltration and reservoir water level fluctuation. Meanwhile, a large number of examples show that the deformation processes of landslides always take a long period of time, indicating that landslides exhibit a time-dependent property. Therefore, the deforma- tion of unsaturated soils of landslide involves creep behaviors. In this paper, the Burgers creep model for unsaturated soils under triaxial stress state is considered based on the unsaturated soil mechanics. Then, by curve fitting using the least squares method, creep parameters in different matric suction states are obtained based on the creep test data of unsaturated soils in the sliding zones of Qianjiangping landslide. Results show that the predicted results are in good agreement with the experimental data, Finally, to fur- ther explore the creep characteristics of the unsaturated soils in sliding zones, the relationships between parameters of the model and matric suction are analyzed and a revised Burgers creep model is developed correspondingly. Simulations on another group of test data are performed by using the modified Burgers creep model and reasonable results are observed,
基金Project supported by the National Natural Science Foundation of China (Nos. 40001008 and 40571066)German Federal Ministry of Education and Research (BMBF) (No. AZ39742)the Postdoctoral Science Foundation o China (No. 20060401048).
文摘A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device to assess the spatial variability and temporal stability of the distribution of soil electrical conductivity (EC), to identify the management zones using cluster analysis based on the spatiotemporal variability of soil EC, and to evaluate the probable potential for site-specific management in coastal regions with conventional statistics and geostatistical techniques. The results indicated high coefficients of variation for topsoil salinity over all the three samplings. The spatial structure of the salinity variability remained relatively stable with time. Kriged contour maps, drawn on the basis of spatial variance structure of the data, showed the spatial trend of the salinity distribution and revealed areas of consistently high or consistently low salinity, while a temporal stability map indicated stable and unstable regions. On the basis of the spatiotemporal characteristics, cluster analysis divided the site into three potential management zones, each with different characteristics that could have an impact on the way the field was managed. On the basis of the clearly defined management zones it was concluded that coastal saline land could be managed in a site-specific way.
基金Project supported by the National Natural Science Foundation of China (No. 40401003)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-356)the Key Laboratory of Ecological Restoration and Ecosystem Management of Jilin Province (No. DS2004-03)
文摘Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for scenario analysis of cropping system models has been increasing. The capability of CropSyst, a cropping system simulation model, to simulate spring wheat growth of a widely grown spring cultivar, 'Longmai 19', in the black soil zone in northeast China under different water and nitrogen regimes was evaluated. Field data collected from a rotation experiment of three growing seasons (1992-1994) were used to calibrate and validate the model. The model was run for 3 years by providing initial conditions at the beginning of the rotation without reinitializing the model in later years in the rotation sequence. Crop input parameters were set based on measured data or taken from CropSyst manual. A few cultivar-specific parameters were adjusted within a reasonable range of fluctuation. The results demonstrated the robustness of CropSyst for simulating evapotranspiration, aboveground biomass, and grain yield of 'Longmai 19' spring wheat with the root mean square errors being 7%, 13% and 13% of the observed means for evapotranspiration (ET), grain yield and aboveground biomass, respectively. Although CropSyst was able to simulate spring production reasonably well, further evaluation and improvement of the model with a more detailed field database was desirable for agricultural systems in northeast China.
文摘In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.
基金supported by the National Key R&D Program of China (2017YFC1501301)the National Natural Science Foundation of China (No. 41572278 and No. 41772310)
文摘This study aims to investigate the correlation between the permeation effect and microfabric of the slip zone soils with Huangtupo landslide in the Three Gorges Reservoir as the study case. Based on the permeability test and scanning electron microscope(SEM) images analysis, the fractal theory and probability entropy are used to quantify the characteristics of the remodeling specimens. First, the relationships between initial moisture content(IMC) and microstructure of the soil(percentage of particle area(PPA), pore roundness(Rp)) before and after permeability test are summarized. Then, the fractal dimension of the soil(pore distribution(Dpd), pore size(Dps)) are analyzed under the permeation effect. Based on the probability entropy, the entropy of pore(Ep) is used to characterize the porosity orientation, and the rose diagrams are used to show the particle orientation under the permeation effect. Finally, the relationship between the microstructure of the soil and its mechanical property is discussed. Results show that under the permeation effect, the microstructure of the soil has undergone tremendous changes. A flat long pore channel is formed. The order of the pore arrangement is enhanced, and soil particles switch the long axis to parallel infiltration direction to reach a new steady state. It can be inferred that the strength of soil would be weakened if the fractal dimension of soil pore decreases under any external environment.
基金funded by the Projects of National Natural Science Foundation of China(Grant No.41977075,41771321)Chongqing Talent Program(CQYC201905009)+1 种基金Science Fund for Distinguished Young Scholars of Chongqing(cstc2019jcyjjqX0025)the Sichuan Science and Technology Program(Grant no.2018SZ0132)。
文摘Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of herbaceous species roots on soil anti-scourability during different growth stages and under different degrees of inundation in this zone.This study sampled two typical grasslands(Hemarthria compressa grassland and Xanthium sibiricum grassland)at two elevations(172 and 165 m a.s.l.)in the water level fluctuation zone(WLFZ)in the Three Gorges Reservoir(TGR)of China to quantify the changes in soil and root properties and their effects on soil anti-scourability.A simulated scouring experiment was conducted to test the soil anti-scourability in April and August of 2018.The results showed that the discrepancy in inundation duration and predominant herbaceous species was associated with a difference in root biomass between the two grasslands.The root weight density(RWD)values in the topsoil(0-10 cm)ranged from 7.31 to 13 mg cm^(-3) for the Hemarthria compressa grassland,while smaller values ranging from 0.48 to 8.61 mg cm^(-3) were observed for the Xanthium sibiricum grassland.In addition,the root biomass of the two herbs was significantly greater at 172 m a.s.l.than that at 165 m a.s.l.in the early recovery growth period(April).Both herbs can effectively improve the soil properties;the organic matter contents of the grasslands were 128.06%to 191.99%higher than that in the bare land(CK),while the increase in the water-stable aggregate ranged from 8.21%to 18.56%.Similarly,the topsoil antiscourability indices in both the herbaceous grasslands were larger than those in the CK.The correlation coefficients between the root length density(RLD),root surface area density(RSAD)and root volume density(RVD)of fine roots and the soil antiscourability index were 0.501,0.776 and 0.936,respectively.Moreover,the change in the soil antiscourability index was more sensitive to alternations in the RLD with diameters less than 0.5 mm.Overall,the present study showed that the perennial herbaceous(H.compressa)has great potential as a countermeasure to reduce or mitigate the impact of erosion in the WLFZ of the Three Gorges Reservoir.
基金the National Natural Science Foundation of China (Grant Nos.41601296,41571278 and 41771321)China Postdoctoral Science Foundation (Grant No.2016M592720)+1 种基金Applied Basic Research Foundation of Yunnan Province (Grant No.2016FD011)Sichuan Science and Technology Program (2018SZ0132)
文摘Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.
基金National Natural Science Foundation of China No.49070028
文摘The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this paper are placed along the southern slope of Funiu Mountain at different heights above sea level. Many compositions and properties of these soils have been determined in laboratory. In this paper, the laws of migration and accumulation of soil materials on the southern slope of Funiu Mountain are discussed first, then the division of the boundary between subtropical zone and temperate zone in this area according to soil geochemistry is discussed with qualitative methods and mathematical classification method in which twelve selected indexes such as K m , Saf, Ba, β, Feo/Fet, Mno/Mnt and so on are used. The result indicates that the boundary between subtropical zone and temperate zone on the southern slope of Funiu Mountain is about 950 m above sea level.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant No. 41201272)the Chinese Academy of Sciences Action-plan for West Development (Grant No. KZCX2-XB3-09)the Chinese Academy of Science (Light of West China Program)
文摘Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(&gt;10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.
文摘Soil heavy metal pollution is one of the main environmental problems in Pearl River Delta Economic?Zone of China. Based on multi-purpose regional geochemical survey, regional eco-geochemical assessment, local eco-geochemical assessment and comprehensive appraisal, the eco-geochemical survey and assessment in Pearl River Delta Economic Zone of 41,698 km2?were completed. Samples from soils were collected in accordance with the two-layer grid method. Totally 54 elements and indicators for soils were determined. Compared to deep soils, the sampled surface soils are enriched in OrgC, N, P, Cd, S,Hg, Ag, B, Au, S and poor with As, Ni, I, Co, Cr, V, MgO, Sc, Al2O3, Fe2O3?etc. The characteristics of geochemical reference value of element in soil that inherited soil parent material and regional elements combined features reflected that the elements enriched in the soil was interrelated with acid rock, sandstone and shale. The spatial distribution characteristics of element regional geochemistry were conditional by regional environmental geological conditions,and effected by human activities. The Pearl River Delta plain is a typical geochemical landscape area with regional anomaly of multiple-elements. The north, western and eastern parts of the Pearl River Delta Economic Zone are quite different in geochemical features due to regional geological background, soil parent materials, geomorphic characteristics and human activities. Environment quality evaluation results show that the grade I and grade II soil accounted for 19.9% and 57.3% of the total area. Many samples that widely distributed in the economic developed of Pearl River Delta Plain area reached the third-grade of national soil environment standard. The soil enriched in Cd, Hg, As, and the area ratio accounting for 22.8% of the total area. It is mainly controlled by the geochemical background, the Pearl River Delta formation evolution process, especially the marine transgression process lead to Cd, Cu, Zn and Pb enrichment in Pearl River Delta plain. At the same time, under the influence of higher pressure of human activities, all kinds of exogenous input material carrying heavy metal pollutants on soil environmental quality also could not to ignore.
文摘The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. duraosura shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. duraosura in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment.
文摘Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moisture within crop’s root zone and its linkage to the amount of water applied is very important as it assists in optimising the efficient use of water and reducing yield losses. The study aimed at evaluating the spatial redistribution of soil moisture within maize roots zone under different irrigation water application regimes. The study was conducted during two irrigatation seasons of 2012 at Nkango Irrigation Scheme, Malawi. The trials consisted of factorial arrangement in a Randomised Complete Block Design (RCBD). The factors were water and nitrogen and both were at four levels. The Triscan Sensor was used to measure volumetric soil moisture contents at different vertical and lateral points. The study inferred that the degree of soil moisture loss depends on the amount of water present in the soil. The rate of soil moisture loss in 100% of full water requirement regime (100% FWRR) treatment was higher than that in 40% FWRR treatment. This was particularly noticed when maize leaves were dry. In 100% FWRR treatment, the attraction between water and the surfaces of soil particles was not tight and as such “free” water was lost through evaporation and deep percolation, while in 40% FWRR, water was strongly attracted to and held on the soil particles surfaces and as such its potential of losing water was reduced.
文摘In this research, soil samples were collected from Shandong Peninsula Blue Economic Zone to investigate heavy metal pollutions in this region and to evaluate the potential ecological risks of heavy metal pollutants based on Hakanson Potential Ecological Risk Indexes. According to the results, Hg was the primary heavy metal pollutant in Blue Economic Zone, followed by Cd, Cu, and Pb as prevalent pollutants. Heavy metals ranked in order of their pollution degrees are: Hg>Cd>Cu>Pb>Zn>Cr>As;the potential ecological risks of heavy metals follow the order of Hg>Cd>As>Pb>Cu>Cr>Zn. Heavy metal pollutions did exist in this region to a certain extent, and the percentage of potential ecological risk in “strong” and “severe” degree reached up to 13.75%. This composite risk characteristic was subject to the restriction of Hg and Cd mainly distributed in Laizhou-Zhaoyuan- Yantai, Muping-Rushan Goldmine, and other densely-populated regions, threatening the safety production of crops. The combined effects of geological background and human activities, e.g. gold mining and domestic pollutants, were the main causes of high potential ecological risks of heavy metals in local environment.
基金The research was funded by Innovation Capability Support Program of Shaanxi(2019TD-040)China National Natural Science Foundation(41472228,41877199)+1 种基金Groundwater and Ecology Security in the North Slope Economic Belt of the Tianshan Mountain(201511047)Key Laboratory of Groundwater and Ecology in Arid Regions of China Geological Survey.
文摘Regional aridity is increasing under global climate change,and therefore the sustainable use of water resources has drawn attention from scientists and the public.Land-use changes can have a significant impact on groundwater recharge in arid regions,and quantitative assessment of the impact is key to sustainable groundwater resources management.In this study,the changes of groundwater recharge after the conversion of natural lands to croplands were investigated and compared in inland and arid region,i.e.,the northern slope of the Tianshan Mountain.Stable isotopes suggest that soil water in topsoil(<2 m)has experienced stronger evaporation under natural lands than croplands,and then moves downward as a piston flow.Recharge was estimated by the tracer-based mass balance method,i.e.,chloride and sulfate.Recharge rates under natural conditions estimated by the chloride mass balance(CMB)method were estimated to be 0.07 mm/a in deserts and 0.4 mm/a in oases.In contrast,the estimated groundwater recharge ranged from 61.2 mm/a to 44.8 mm/a in croplands,indicating that groundwater recharge would increase significantly after land changes from natural lands to irrigated croplands in arid regions.Recharge estimated by the sulfate mass balance method is consistent with that from the CMB method,indicating that sulfate is also a good tracer capable of estimating groundwater recharge.
基金granted by the United Nations Educational,Scientific and Cultural Organization program(IGCP665)the China basic geological Investigation Program(Grant No.DD20160316).
文摘The American Science journal,on the occasion of its 125 publication anniversary,in 2016,released 125 of the most challenging scientific issues(Kennedy et al.,2005)to the world.According to the basics,breadth and the influence,25 of the issues which considered to be the most important were screened,including"How many people can the Earth carry?"(Stokstad,2005;Dailyg et al.,1992;Cohen,1995)and"How high will the greenhouse effect make the earth temperature?
文摘The studied agriculture\|pasture interlacing zone has its specific natural conditions, at which the natural systems are unstable, their self\|regulation capability is low and the equilibrium is easily broken, and hence the habitat is fairly vulnerable. During last 20 years the increasing population and livestock, over\|reclamation, over\|pasturing, over\|deforesting, and other intensified negative human activities in the zone resulted in coarsening of surface soil, decrease of organic mater content in soil, reduction of vegetation coverage, variation and degradation of flora structure, and hence in desertization of the land, although average of gales and sandstorms some decreased and the climate tended to be better in the region. However, the frequent sandstorms occurring in the springs of last and present years has attracted much attention. Investigations confirmed that the main cause for the phenomena is the unreasonable human activities rather than the natural factors.
基金supported by the National Natural Science Foundation of China (41661054 41867005)+4 种基金Project for Top Young Talent Candidates of Ningxia (RQ0010)Science Research Foundation of Ningxia Higher Education (NGY2018007)Ningxia Natural Science Foundation (2018AAC02004)Specialized Foundation for Fundamental Condition Construction in Ningxia Science and Technology (2018DPC05021)the Project of First-Class University of Western China for Key Laboratory of Ningxia University (NXYLXK2017B06, GZXM2017001)
文摘Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.