Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefo...The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune ce...BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.展开更多
BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal ma...BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal malignancies.Increasing evi-dence has shown an association between immune infiltration in RCC and clinical outcomes.To discover possible targets for the immune system,we investigated the link between tumor-infiltrating immune cells(TIICs)and the prognosis of RCC.AIM To investigate the effects of 22 TIICs on the prognosis of RCC patients and iden-tify potential therapeutic targets for RCC immunotherapy.METHODS The CIBERSORT algorithm partitioned the 22 TIICs from the Cancer Genome Atlas cohort into proportions.Cox regression analysis was employed to evaluate the impact of 22 TIICs on the probability of developing RCC.A predictive model for immunological risk was developed by analyzing the statistical relationship between the subpopulations of TIICs and survival outcomes.Furthermore,multi-variate Cox regression analysis was used to investigate independent factors for the prognostic prediction of RCC.A value of P<0.05 was regarded as statistically significant.RESULTS Compared to normal tissues,RCC tissues exhibited a distinct infiltration of im-mune cells.An immune risk score model was established and univariate Cox regression analysis revealed a significant association between four immune cell types and the survival risk connected to RCC.High-risk individuals were correlated to poorer outcomes according to the Kaplan-Meier survival curve(P=1E-05).The immunological risk score model was demonstrated to be a dependable predictor of survival risk(area under the curve=0.747)via the receiver operating characteristic curve.According to multivariate Cox regression analysis,the immune risk score model independently predicted RCC patients'prognosis(hazard ratio=1.550,95%CI:1.342–1.791;P<0.001).Finally,we established a nomogram that accurately and comprehensively forecast the survival of patients with RCC.CONCLUSION TIICs play various roles in RCC prognosis.The immunological risk score is an independent predictor of poor survival in kidney cancer cases.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for ...BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for prognosis and survival,and immune cells play an important role in this process.Therefore,it is helpful to understand the immune status of postoperative patients by evaluating the levels of peripheral blood immune cells,especially total T cells(CD3+),helper T cells(CD3+CD4+),and suppressor T cells(CD3+CD8+),and its relationship to sur-vival.AIM To analyzed the immune cells in peripheral blood of patients with gastric cancer after surgery,detect the levels of total T cells,helper T cells and suppressor T cells.METHODS A total of 58 patients with gastric cancer who received surgical treatment were included in the retrospective study.Flow cytometry was used to detect the level of peripheral blood immune cells and analyze the correlation between total T cells,helper T cells and inhibitory T cells.To explore the relationship between these immune markers and patient survival.RESULTS The results showed that the levels of total T cells,helper T cells,and suppressor T cells changed in patients after gastric cancer surgery.There was a significant positive correlation between total T cells,helper T cells and suppressor T cells(r=0.35,P<0.01;r=0.56,P<0.01).However,there was a negative correlation between helper T cells and suppressor T cells(r=-0.63,P<0.01).Follow-up showed that the survival rate of patients in the high-level total T cell group was significantly higher than that in the low-level group(28.87±24.98 months vs 18.42±16.21 months).The survival curve shows that the curve of patients in the high-level group is shifted to the upper right,and that of the low-level group is shifted downward.There was no significant difference between the levels of helper T cells and suppressor T cells and patient survival time.CONCLUSION By detecting peripheral blood immune cells with flow cytometry,we can initially evaluate the immune status of patients after gastric cancer surgery and initially explore its relationship with patient survival.展开更多
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t...BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.展开更多
This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is...This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is expected to provide some possible strategies for the research and treatment of ALI and acute respiratory distress syndrome(ARDS).展开更多
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ...Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.展开更多
BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of ...BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of MTDH on stemness and immune infiltration in HCC.METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases.Immunohistochemistry was used to analyze the tissue samples.MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines.The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays.Next,we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium.Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR.Flow cytometry,immunofluorescence,and tumor sphere formation assays were used to characterize stem-like cells.The effects of MTDH inhibition on tumor growth were evaluated in vivo.The correlation of MTDH with immune cells,immunomodulators,and chemokines was analyzed using ssGSEA and TISIDB databases.RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues.High MTDH expression was associated with a poor prognosis.HCC cells overex-pressing MTDH exhibited stronger invasion and migration abilities,exhibited a stem cell-like phenotype,and formed spheres;however,MTDH inhibition attenuated these effects.MTDH inhibition suppressed HCC progression and CD133 expression in vivo.MTDH was positively correlated with immature dendritic,T helper 2 cells,central memory CD8^(+)T,memory B,activated dendritic,natural killer(NK)T,NK,activated CD4^(+)T,and central memory CD4^(+)T cells.MTDH was negatively correlated with activated CD8^(+)T cells,eosinophils,activated B cells,monocytes,macrophages,and mast cells.A positive correlation was observed between the MTDH level and CXCL2 expression,whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression.CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis,promoting tumor stemness,immune infiltration,and HCC progression.展开更多
Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Me...Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the crit...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.展开更多
BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To ex...BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.展开更多
Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression....Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.展开更多
Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)we...Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)were retrieved from the UCSC Xena database and subjected to analysis.Gene sets representing 22 types of immunocytes were acquired,and immunocytes relevant to prognosis were identified.Weighted gene co-expression network analysis(WGCNA)was utilized to identify gene modules associated with prognosis-related immunocytes and to construct immune-related gene markers.Differentially expressed genes were then screened,and the association between immune score and biological function of immune-related gene markers was analyzed.Furthermore,tissue samples from cervical cancer patients in Northeast China were collected to validate the expression of two genes using real-time PCR and immunohistochemistry.Results:This study identified 10 immunocytes significantly correlated with overall survival time in patients.Six gene modules were identified as significantly associated with prognosis-related immunocytes,with gene module 6 showing relevance to all prognosis-related immunocytes.Gene module 6 was related to all prognosis-related immunocytes.Moreover,two genes(including PLA2G2D and CHIT1)were found to be significantly associated with overall survival in cancer patients.Patients with CESC were classified into high and low immune score groups based on the median score of gene markers.Correlation analysis of the immune score and biological function was performed.Immunohistochemistry and real-time PCR results revealed high expression of CHIT1 and PLA2G2D in CESC tumor tissues.Conclusion:PLA2G2D and CHIT1 show promise as biomarkers for evaluating immune infiltration and prognosis in patients with cervical cancer.展开更多
This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and ...This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and FAO datasets were used to identify these key genes.Wilcoxon rank sum test was used to assess the levels of acyl-CoA dehydrogenase medium chain(ACADM)between KIRC and non cancer samples.The logistic regression and Wilcoxon rank sum test were used to explore the association between ACADM and clinical features.The diagnostic performance of ACADM for KIRC was asessed using a diagnostic receiver operating ch aracteristic(ROC)curve.The co-expressed genes of ACADM were identifed in LinkedOmics database,and their function and pathway enrichment were analyzed.The correlation between ACADM expression level and immune infitration was analyzed by Gene Set Variation Analysis(GSVA)method Additionally,the proliferation,migration,and invasion abilities of KIRC cells were assessed after overexpressing ACADM.Following differential analysis and intersection,we identifed six hub genes,induding ACADM.We found that the expression level of ACADM was decreased in KIRC tissues and had a better diagnostic efect(AUC=0.916).Survival analysis suggested that patients with decreased ACADM expression had a worse prognosis.According to correlation analysis,a variety of dinical features were associated with the expression level of ACADML By analyzing the infiltration level of immune cells,we found that ACADM may be related to the enrichment of immune cells.Finally,ACADM overexpression inhibited proliferation,migration,and invasion of KIRC cells.In conclusion,our findings suggest that reduced ACADM expression in KIRC patients is indicative of poor prognosis.These results imply that ACADM may be a diagnostic and prognostic marker for individuals with KIRC,offering a reference for dinicians in diagnosis and treatment.展开更多
Periodontal disease is an inflammatory and destructive disease of periodontal support tissue caused by microorganisms in dental plaque. During the development of periodontal disease, host immune regulation plays an im...Periodontal disease is an inflammatory and destructive disease of periodontal support tissue caused by microorganisms in dental plaque. During the development of periodontal disease, host immune regulation plays an important role, and unnecessary excessive immune regulation often exacerbates the course of chronic periodontal disease. Mesenchymal stem cells (MSCs) are adult stem cells with self replication ability and multi-directional differentiation potential. Many studies have found that MSCs have strong immunosuppressive effects on both adaptive and innate immunity. In recent years, literature has reported that MSCs are involved in the immune regulatory effect of chronic periodontal disease, inhibiting its inflammatory response and alveolar bone resorption, but the specific regulatory mechanism has not been elucidated. This article reviews the current research status of the immune regulatory effects of MSCs on chronic periodontitis.展开更多
Esophageal squamous cell carcinoma(ESCC)is a substantial global health burden.Immune escape mechanisms are important in ESCC progression,enabling cancer cells to escape the surveillance of the host immune system.One k...Esophageal squamous cell carcinoma(ESCC)is a substantial global health burden.Immune escape mechanisms are important in ESCC progression,enabling cancer cells to escape the surveillance of the host immune system.One key player in this process is the Aryl Hydrocarbon Receptor(AhR),which influences multiple cellular processes,including proliferation,differentiation,metabolism,and immune regulation.Dysregulated AhR signaling participates in ESCC development by stimulating carcinogenesis,epithelial-mesenchymal transition,and immune escape.Targeting AhR signaling is a potential therapeutic approach for ESCC,with AhR ligands showing efficacy in preclinical studies.Additionally,modification of AhR ligands and combination therapies present new opportunities for therapeutic intervention.This review aims to address the knowledge gap related to the role of AhR signaling in ESCC pathogenesis and immune escape.展开更多
Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological funct...Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.展开更多
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by the National Key Research and Development Program,China(Grant Nos.:2021YFC2101500 and 2021YFC2103900)the National Natural Science Foundation of China(Grant Nos.:22278335 and 21978236)the Natural Science Basic Research Program of Shaanxi,China(Grant No.:2023-JC-JQ-17).
文摘The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
基金Supported by Program of Shanghai Academic Research Leader,No.22XD1404800.
文摘BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.
基金Supported by The Medical Scientific Research Project of the Jiangsu Health Commission,China,No.M2020055The Nanjing Medical Science and Technology Development Project,China,No.YKK22130The Postgraduate Research and Practice Innovation Program of Jiangsu Province,China,No.KYCX23_2105.
文摘BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal malignancies.Increasing evi-dence has shown an association between immune infiltration in RCC and clinical outcomes.To discover possible targets for the immune system,we investigated the link between tumor-infiltrating immune cells(TIICs)and the prognosis of RCC.AIM To investigate the effects of 22 TIICs on the prognosis of RCC patients and iden-tify potential therapeutic targets for RCC immunotherapy.METHODS The CIBERSORT algorithm partitioned the 22 TIICs from the Cancer Genome Atlas cohort into proportions.Cox regression analysis was employed to evaluate the impact of 22 TIICs on the probability of developing RCC.A predictive model for immunological risk was developed by analyzing the statistical relationship between the subpopulations of TIICs and survival outcomes.Furthermore,multi-variate Cox regression analysis was used to investigate independent factors for the prognostic prediction of RCC.A value of P<0.05 was regarded as statistically significant.RESULTS Compared to normal tissues,RCC tissues exhibited a distinct infiltration of im-mune cells.An immune risk score model was established and univariate Cox regression analysis revealed a significant association between four immune cell types and the survival risk connected to RCC.High-risk individuals were correlated to poorer outcomes according to the Kaplan-Meier survival curve(P=1E-05).The immunological risk score model was demonstrated to be a dependable predictor of survival risk(area under the curve=0.747)via the receiver operating characteristic curve.According to multivariate Cox regression analysis,the immune risk score model independently predicted RCC patients'prognosis(hazard ratio=1.550,95%CI:1.342–1.791;P<0.001).Finally,we established a nomogram that accurately and comprehensively forecast the survival of patients with RCC.CONCLUSION TIICs play various roles in RCC prognosis.The immunological risk score is an independent predictor of poor survival in kidney cancer cases.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for prognosis and survival,and immune cells play an important role in this process.Therefore,it is helpful to understand the immune status of postoperative patients by evaluating the levels of peripheral blood immune cells,especially total T cells(CD3+),helper T cells(CD3+CD4+),and suppressor T cells(CD3+CD8+),and its relationship to sur-vival.AIM To analyzed the immune cells in peripheral blood of patients with gastric cancer after surgery,detect the levels of total T cells,helper T cells and suppressor T cells.METHODS A total of 58 patients with gastric cancer who received surgical treatment were included in the retrospective study.Flow cytometry was used to detect the level of peripheral blood immune cells and analyze the correlation between total T cells,helper T cells and inhibitory T cells.To explore the relationship between these immune markers and patient survival.RESULTS The results showed that the levels of total T cells,helper T cells,and suppressor T cells changed in patients after gastric cancer surgery.There was a significant positive correlation between total T cells,helper T cells and suppressor T cells(r=0.35,P<0.01;r=0.56,P<0.01).However,there was a negative correlation between helper T cells and suppressor T cells(r=-0.63,P<0.01).Follow-up showed that the survival rate of patients in the high-level total T cell group was significantly higher than that in the low-level group(28.87±24.98 months vs 18.42±16.21 months).The survival curve shows that the curve of patients in the high-level group is shifted to the upper right,and that of the low-level group is shifted downward.There was no significant difference between the levels of helper T cells and suppressor T cells and patient survival time.CONCLUSION By detecting peripheral blood immune cells with flow cytometry,we can initially evaluate the immune status of patients after gastric cancer surgery and initially explore its relationship with patient survival.
文摘BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.
基金Yunnan Fundamental Research Projects(202201AU070167&202301AT070258),and the Yunnan Key Laboratory of Formulated Granules(202105AG070014).
文摘This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is expected to provide some possible strategies for the research and treatment of ALI and acute respiratory distress syndrome(ARDS).
基金partially supported by the Natural Science Foundation of Zhejiang Province(Award number:D21C170001)the National Natural Science Foundation of China(Award number:31973000)。
文摘Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
基金National Natural Science Foundation of China,No.82173359Basic Research and Frontier Exploration Project of Chongqing and Technology Commission,No.cstc2018jcyjAX0181Kuanren Talents Program of The Second Affiliated Hospital of Chongqing Medical University.
文摘BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of MTDH on stemness and immune infiltration in HCC.METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases.Immunohistochemistry was used to analyze the tissue samples.MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines.The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays.Next,we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium.Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR.Flow cytometry,immunofluorescence,and tumor sphere formation assays were used to characterize stem-like cells.The effects of MTDH inhibition on tumor growth were evaluated in vivo.The correlation of MTDH with immune cells,immunomodulators,and chemokines was analyzed using ssGSEA and TISIDB databases.RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues.High MTDH expression was associated with a poor prognosis.HCC cells overex-pressing MTDH exhibited stronger invasion and migration abilities,exhibited a stem cell-like phenotype,and formed spheres;however,MTDH inhibition attenuated these effects.MTDH inhibition suppressed HCC progression and CD133 expression in vivo.MTDH was positively correlated with immature dendritic,T helper 2 cells,central memory CD8^(+)T,memory B,activated dendritic,natural killer(NK)T,NK,activated CD4^(+)T,and central memory CD4^(+)T cells.MTDH was negatively correlated with activated CD8^(+)T cells,eosinophils,activated B cells,monocytes,macrophages,and mast cells.A positive correlation was observed between the MTDH level and CXCL2 expression,whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression.CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis,promoting tumor stemness,immune infiltration,and HCC progression.
基金supported by the National Natural Science Foundation of China(No.81972681,82103677)Tianjin Education Commission Research Plan Project(No.2021KJ201)+1 种基金Shenzhen High-level Hospital Construction Fund(No.G2022139)Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-009A).
文摘Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金Supported by National Natural Foundation of China,No.821742232019 Chinese and Western Medicine Clinical Collaborative Capacity Building Project for Major Difficult Diseases,No.2019-ZX-005。
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.
基金Supported by National Natural Science Foundation of China,No.82300347Natural Science Foundation of Ningbo,No.2021J296Science Foundation of Lihuili Hospital,No.2022ZD004.
文摘BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
文摘Objective:Lung squamous cell carcinoma(LUSC)is associated with a low survival rate.Evidence suggests that bone morphogenetic proteins(BMPs)and their receptors(BMPRs)play crucial roles in tumorigenesis and progression.However,a comprehensive analysis of their role in LUSC is lacking.Our study aimed to explore the relationship between BMPs/BMPRs expression levels and the tumorigenesis and prognosis of LUSC.Methods:The“R/Limma”package was utilized to analyze the differential expression characteristics of BMPs/BMPRs in LUSC,using data from TCGA,GTEx,and GEO databases.Concurrently,the“survminer”packages were employed to investigate their prognostic value and correlation with clinical features in LUSC.The core gene associated with LUSC progression was further explored through weighted gene correlation network analysis(WGCNA).LASSO analysis was conducted to construct a prognostic risk model for LUSC.Clinical specimens were examined by immunohistochemical analysis to confirm the diagnostic value in LUSC.Furthermore,based on the tumor immune estimation resource database and tumor-immune system interaction database,the role of the core gene in the tumor microenvironment of LUSC was explored.Results:GDF10 had a significant correlation only with the pathological T stage of LUSC,and the protein expression level of GDF10 decreased with the tumorigenesis of LUSC.A prognostic risk model was constructed with GDF10 as the core gene and 5 hub genes(HRASLS,HIST1H2BH,FLRT3,CHEK2,and ALPL)for LUSC.GDF10 showed a significant positive correlation with immune cell infiltration and immune checkpoint expression.Conclusion:GDF10 might serve as a diagnostic biomarker reflecting the tumorigenesis of LUSC and regulating the tumor immune microenvironment to guide more effective treatment for LUSC.
基金This work was supported by the Haiyan Foundation Youth Project JJQN2022-12.
文摘Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)were retrieved from the UCSC Xena database and subjected to analysis.Gene sets representing 22 types of immunocytes were acquired,and immunocytes relevant to prognosis were identified.Weighted gene co-expression network analysis(WGCNA)was utilized to identify gene modules associated with prognosis-related immunocytes and to construct immune-related gene markers.Differentially expressed genes were then screened,and the association between immune score and biological function of immune-related gene markers was analyzed.Furthermore,tissue samples from cervical cancer patients in Northeast China were collected to validate the expression of two genes using real-time PCR and immunohistochemistry.Results:This study identified 10 immunocytes significantly correlated with overall survival time in patients.Six gene modules were identified as significantly associated with prognosis-related immunocytes,with gene module 6 showing relevance to all prognosis-related immunocytes.Gene module 6 was related to all prognosis-related immunocytes.Moreover,two genes(including PLA2G2D and CHIT1)were found to be significantly associated with overall survival in cancer patients.Patients with CESC were classified into high and low immune score groups based on the median score of gene markers.Correlation analysis of the immune score and biological function was performed.Immunohistochemistry and real-time PCR results revealed high expression of CHIT1 and PLA2G2D in CESC tumor tissues.Conclusion:PLA2G2D and CHIT1 show promise as biomarkers for evaluating immune infiltration and prognosis in patients with cervical cancer.
基金the National Natural Science Foundation of China(Grant Nos.82072816 and 81672553)the Natural Science Foundation of Shandong Province(Grant No.ZR2021LZY003).
文摘This research aims to identify the key fatty acid beta-oxidation(FAO)genes that are altered in kidney renal clear cell carcinoma(KIRC)and to analyze the role of these genes in KIRC The Gene Expression Omnibus(GEO)and FAO datasets were used to identify these key genes.Wilcoxon rank sum test was used to assess the levels of acyl-CoA dehydrogenase medium chain(ACADM)between KIRC and non cancer samples.The logistic regression and Wilcoxon rank sum test were used to explore the association between ACADM and clinical features.The diagnostic performance of ACADM for KIRC was asessed using a diagnostic receiver operating ch aracteristic(ROC)curve.The co-expressed genes of ACADM were identifed in LinkedOmics database,and their function and pathway enrichment were analyzed.The correlation between ACADM expression level and immune infitration was analyzed by Gene Set Variation Analysis(GSVA)method Additionally,the proliferation,migration,and invasion abilities of KIRC cells were assessed after overexpressing ACADM.Following differential analysis and intersection,we identifed six hub genes,induding ACADM.We found that the expression level of ACADM was decreased in KIRC tissues and had a better diagnostic efect(AUC=0.916).Survival analysis suggested that patients with decreased ACADM expression had a worse prognosis.According to correlation analysis,a variety of dinical features were associated with the expression level of ACADML By analyzing the infiltration level of immune cells,we found that ACADM may be related to the enrichment of immune cells.Finally,ACADM overexpression inhibited proliferation,migration,and invasion of KIRC cells.In conclusion,our findings suggest that reduced ACADM expression in KIRC patients is indicative of poor prognosis.These results imply that ACADM may be a diagnostic and prognostic marker for individuals with KIRC,offering a reference for dinicians in diagnosis and treatment.
文摘Periodontal disease is an inflammatory and destructive disease of periodontal support tissue caused by microorganisms in dental plaque. During the development of periodontal disease, host immune regulation plays an important role, and unnecessary excessive immune regulation often exacerbates the course of chronic periodontal disease. Mesenchymal stem cells (MSCs) are adult stem cells with self replication ability and multi-directional differentiation potential. Many studies have found that MSCs have strong immunosuppressive effects on both adaptive and innate immunity. In recent years, literature has reported that MSCs are involved in the immune regulatory effect of chronic periodontal disease, inhibiting its inflammatory response and alveolar bone resorption, but the specific regulatory mechanism has not been elucidated. This article reviews the current research status of the immune regulatory effects of MSCs on chronic periodontitis.
文摘Esophageal squamous cell carcinoma(ESCC)is a substantial global health burden.Immune escape mechanisms are important in ESCC progression,enabling cancer cells to escape the surveillance of the host immune system.One key player in this process is the Aryl Hydrocarbon Receptor(AhR),which influences multiple cellular processes,including proliferation,differentiation,metabolism,and immune regulation.Dysregulated AhR signaling participates in ESCC development by stimulating carcinogenesis,epithelial-mesenchymal transition,and immune escape.Targeting AhR signaling is a potential therapeutic approach for ESCC,with AhR ligands showing efficacy in preclinical studies.Additionally,modification of AhR ligands and combination therapies present new opportunities for therapeutic intervention.This review aims to address the knowledge gap related to the role of AhR signaling in ESCC pathogenesis and immune escape.
文摘Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.