Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities o...Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.展开更多
Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and ho...Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.展开更多
Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) ...Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness.展开更多
Gas atomization was usually regarded as a good method for producing the spherical or approximate spherical powders. We found a lot of non-spherical powders in production processes, especially in larger particle size d...Gas atomization was usually regarded as a good method for producing the spherical or approximate spherical powders. We found a lot of non-spherical powders in production processes, especially in larger particle size distribution area. The causes of producing non-spherical powders are explained and some analyses are done in order to find a better condition of producing spherical powders in this paper. The following morphologies were obtained by atomized Fe50 Co50 and pure iron and investigated by scanning electron microscopy (SEM).展开更多
The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equat...The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equation together with that of a turbulent gas flow is solved numerically in the turbulent flow of a ventilation chamber with a jet on the wall based on the proposed model relating the fluctuating coagulation to the gradient of mean concentration.Some results are compared with the experimental data.The results show that the proposed model relating the fluctuating coagulation to the gradient of mean concentration is reasonable,and it is necessary to consider the contribution to coagulation resulting from the fluctuating concentration in such a flow.The changes of the particle number concentration M_(0) and the geometric mean diameter dg are more obvious in the core area of the jet,but less obvious in other areas.With the increase in the initial particle number concentration m00,the values of M_(0) and the standard deviation of the particle sizeσdecrease,but the value of d_(g) increases.The decrease in the initial particle diameter leads to the reduction of M_(0) andσand the increase in d_(g).With the increase in the Reynolds number,particles have few chances of collision,and hence the coagulation rate is reduced,leading to the increase in M_(0) andσand the decrease in d_(g).展开更多
Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,t...Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.展开更多
Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles.This paper proposes a deep learning(DL)scheme in ...Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles.This paper proposes a deep learning(DL)scheme in conjunction with an optical property database to achieve this goal.Deep neural network(DNN)architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters,size parameters,and refractive indices.The dataset was computed through the invariant imbedding T-matrix method.Four separate DNN architectures were created to compute the extinction efficiency factor,single-scattering albedo,asymmetry factor,and phase matrix.The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters.The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database,which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy.In addition,the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database.Importantly,the ratio of the database size(~127 GB)to that of the DNN parameters(~20 MB)is approximately 6810,implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models.展开更多
Employing multiple scattering formulation of T-matrix method, numerical simulations are developed and applied to polarized scattering from random clusters of spatially-oriented, non-spherical particles. Polarized scat...Employing multiple scattering formulation of T-matrix method, numerical simulations are developed and applied to polarized scattering from random clusters of spatially-oriented, non-spherical particles. Polarized scattering is numerically presented for the functional dependence on particle shape, size, spatial distribution and orientation, and other physical parameters. Numerical calculations of backscattering from randomly clustered particles are well compared with that from independent particles and clusters. It can be seen that spatial distribution and orientation of non-spherical particles can have significant effect on scattering.展开更多
Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization ...Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.展开更多
The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resi...The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resistance of automotive coatings,such experiment-based methods suffer from poor repeatability and high cost.The main purpose of this work is to develop a CFD-DEM-wear coupling method to accurately and efficiently simulate stone chipbehaviorof automotive coatings inagravelometer test.Toachieve this end,an approach coupling an unresolved computational fluid dynamics(CFD)method and a discrete element method(DEM)are employed to account for interactions between fluids and large particles.In order to accurately describe large particles,a rigid connection particle method is proposed.In doing so,each actual non-spherical particle can be approximately described by rigidly connecting a group of non-overlapping spheres,and particle-fluid interactions are simulated based on each component sphere.An erosion wear model is used to calculate the impact damage of coatings based on particlecoating interactions.Single spherical particle tests are performed to demonstrate the feasibility of the proposed rigid connection particle method under various air pressure conditions.Then,the developed CFD-DEM-wear model is applied to reproduce the stone chip behavior of two standard tests,i.e.,DIN 55996-1 and SAE-J400-2002 tests.Numerical results are found to be in good agreement with experimental data,which demonstrates the capacity of our developed method in stone chip resistance evaluation.Finally,parametric studies are conducted to numerically investigate the influences of initial velocity and test panel orientation on impact damage of automotive coatings.展开更多
Haze is a pollution weather phenomenon that has been widely concerned by people in recent years. It has a significant impact on people’s production, life, and health. This study focuses on large-scale haze weather th...Haze is a pollution weather phenomenon that has been widely concerned by people in recent years. It has a significant impact on people’s production, life, and health. This study focuses on large-scale haze weather that happened in eastern China in late January 2021. The research uses multi-party data and synoptic analysis methods to analyze the occurrence, evolution, and end of the haze weather. The polar vortex, the change of the atmospheric circulation, the change of the cold air force, the temperature and humidity, and the rain and snow weather are the important reasons for this weathering process. It can be used for reference in future research on haze weather.展开更多
With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and sum...With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and summarizes the important lessons China can teach the rest of the world about applying this tactic. China’s capabilities in the digital economy, National Innovation Demonstration Zones, and urban innovation systems are examined in this article, along with its shortcomings in information mechanisms and pollution sources. This essay also summarizes China’s achievements, particularly regarding local autonomy. The essay goes on to say, however, that China is probably going to be under more pressure to manage HF in the future, both in terms of long-term solutions and the economy.展开更多
Based on meteorology and environment monitoring data in January,2008 in Liaoning central region,a typical haze weather process was analyzed.The results showed that haze was formed due to the stable weather condition i...Based on meteorology and environment monitoring data in January,2008 in Liaoning central region,a typical haze weather process was analyzed.The results showed that haze was formed due to the stable weather condition in the earth surface and upper air layer in Liaoning central region.Especially because that the weakening of atmospheric dispersion ability in the urban boundary layer that was 500 m under earth surface,caused the pollutant in the air can not disperse.Thus,it resulted in the deterioration of air quality,increase of concentration of particulate mass,and declination of visibility.And in the end,haze formed.展开更多
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region (Grant No.NJZY23100)。
文摘Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.
基金Supported by the National Natural Science Foundation of China (50706007 50976025) the National Key Program of Basic Research in China (2010CB732206)+1 种基金 the Foundation of Excellent Young Scholar of Southeast University (4003001039) the Collaboration Project of China and British (2010DFA61960)
文摘Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.
基金Funded by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period(No.2009ZX02030-1)the National Natural Science Foundation of China(No.51205387)the Science and Technology Commission of Shanghai(No.11nm0500300),the Science and Technology Commission of Shanghai(No.14XD1425300)
文摘Non-spherical colloidal silica nanoparticle was prepared by a simple new method, and its particle size distribution and shape morphology were characterized by dynamic light scattering(DLS) and the Focus Ion Beam(FIB) system. This kind of novel colloidal silica particles can be well used in chemical mechanical polishing(CMP) of sapphire wafer surface. And the polishing test proves that non-spherical colloidal silica slurry shows much higher material removal rate(MRR) with higher coefficient of friction(COF) when compared to traditional large spherical colloidal silica slurry with particle size 80 nm by DLS. Besides, sapphire wafer polished by non-spherical abrasive also has a good surface roughness of 0.460 6 nm. Therefore, non-spherical colloidal silica has shown great potential in the CMP field because of its higher MRR and better surface roughness.
文摘Gas atomization was usually regarded as a good method for producing the spherical or approximate spherical powders. We found a lot of non-spherical powders in production processes, especially in larger particle size distribution area. The causes of producing non-spherical powders are explained and some analyses are done in order to find a better condition of producing spherical powders in this paper. The following morphologies were obtained by atomized Fe50 Co50 and pure iron and investigated by scanning electron microscopy (SEM).
基金Project supported by the Major Program of the National Natural Science Foundation of China(No.91852102)。
文摘The Reynolds-averaged general dynamic equation(RAGDE)for the nanoparticle size distribution function is derived,including the contribution to particle coagulation resulting from the fluctuating concentration.The equation together with that of a turbulent gas flow is solved numerically in the turbulent flow of a ventilation chamber with a jet on the wall based on the proposed model relating the fluctuating coagulation to the gradient of mean concentration.Some results are compared with the experimental data.The results show that the proposed model relating the fluctuating coagulation to the gradient of mean concentration is reasonable,and it is necessary to consider the contribution to coagulation resulting from the fluctuating concentration in such a flow.The changes of the particle number concentration M_(0) and the geometric mean diameter dg are more obvious in the core area of the jet,but less obvious in other areas.With the increase in the initial particle number concentration m00,the values of M_(0) and the standard deviation of the particle sizeσdecrease,but the value of d_(g) increases.The decrease in the initial particle diameter leads to the reduction of M_(0) andσand the increase in d_(g).With the increase in the Reynolds number,particles have few chances of collision,and hence the coagulation rate is reduced,leading to the increase in M_(0) andσand the decrease in d_(g).
基金the financial support by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidization of non-spherical particles is very common in petroleum engineering.Understanding the complex phenomenon of non-spherical particle flow is of great significance.In this paper,coupled with two-fluid model,the drag coefficient correlation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical particles.The simulation results were compared with the experimental data from the literature.Good agreement between the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction between the gas phase and solid phase.Then,several cases of different particles,including tetrahedron,cube,and sphere,together with the nylon beads used in the model validation,were employed in the simulations to study the effect of particle shape on the flow behaviors in the bubbling fluidized bed.Particle shape affects the hydrodynamics of non-spherical particles mainly on microscale.This work can be a basis and reference for the utilization of artificial neural network in the investigation of drag coefficient correlation in the dense gas-solid two-phase flow.Moreover,the proposed drag coefficient correlation provides one more option when investigating the hydrodynamics of non-spherical particles in the gas-solid fluidized bed.
基金supported by the NSFC Major Project (Grant Nos. 42090030, and 42090032)the National Natural Science Foundation of China (Grant Nos. 42022038, and 42075155)the National Key Research and Development Program (2019YFC1510400)
文摘Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles.This paper proposes a deep learning(DL)scheme in conjunction with an optical property database to achieve this goal.Deep neural network(DNN)architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters,size parameters,and refractive indices.The dataset was computed through the invariant imbedding T-matrix method.Four separate DNN architectures were created to compute the extinction efficiency factor,single-scattering albedo,asymmetry factor,and phase matrix.The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters.The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database,which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy.In addition,the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database.Importantly,the ratio of the database size(~127 GB)to that of the DNN parameters(~20 MB)is approximately 6810,implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models.
基金Supported by the National Natural Science Foundation of China the Shanghai Centre for Applied Physicsthe Shanghai Research and Development Foundation of Applied materials
文摘Employing multiple scattering formulation of T-matrix method, numerical simulations are developed and applied to polarized scattering from random clusters of spatially-oriented, non-spherical particles. Polarized scattering is numerically presented for the functional dependence on particle shape, size, spatial distribution and orientation, and other physical parameters. Numerical calculations of backscattering from randomly clustered particles are well compared with that from independent particles and clusters. It can be seen that spatial distribution and orientation of non-spherical particles can have significant effect on scattering.
基金financially supported by the National Natural Science Foundation of China(Grant No.51706055).
文摘Fluidized beds are widely used in many industrial fields such as petroleum,chemical and energy.In actual industrial processes,spherical inert particles are typically added to the fluidized bed to promote fluidization of non-spherical particles.Understanding mixing behaviors of binary mixtures in a fluidized bed has specific significance for the design and optimization of related industrial processes.In this study,the computational fluid dynamic-discrete element method with the consideration of rolling friction was applied to evaluate the mixing behaviors of binary mixtures comprising spherocylindrical particles and spherical particles in a fluidized bed.The simulation results indicate that the differences between rotational particle velocities were higher than those of translational particle velocities for spherical and non-spherical particles when well mixed.Moreover,as the volume fraction of the spherocylindrical particles increases,translational and rotational granular temperatures gradually increase.In addition,the addition of the spherical particles makes the spherocylindrical particles preferably distributed in a vertical orientation.
基金supported by the National Key R&D Program of China(No.2017YFE0117300)the Science and Technology Planning Project of Guangzhou(No.201804020065)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.311021013).
文摘The stone chip resistance performance of automotive coatings has attracted increasing attention in academic and industrial communities.Even though traditional gravelometer tests can be used to evaluate stone chip resistance of automotive coatings,such experiment-based methods suffer from poor repeatability and high cost.The main purpose of this work is to develop a CFD-DEM-wear coupling method to accurately and efficiently simulate stone chipbehaviorof automotive coatings inagravelometer test.Toachieve this end,an approach coupling an unresolved computational fluid dynamics(CFD)method and a discrete element method(DEM)are employed to account for interactions between fluids and large particles.In order to accurately describe large particles,a rigid connection particle method is proposed.In doing so,each actual non-spherical particle can be approximately described by rigidly connecting a group of non-overlapping spheres,and particle-fluid interactions are simulated based on each component sphere.An erosion wear model is used to calculate the impact damage of coatings based on particlecoating interactions.Single spherical particle tests are performed to demonstrate the feasibility of the proposed rigid connection particle method under various air pressure conditions.Then,the developed CFD-DEM-wear model is applied to reproduce the stone chip behavior of two standard tests,i.e.,DIN 55996-1 and SAE-J400-2002 tests.Numerical results are found to be in good agreement with experimental data,which demonstrates the capacity of our developed method in stone chip resistance evaluation.Finally,parametric studies are conducted to numerically investigate the influences of initial velocity and test panel orientation on impact damage of automotive coatings.
文摘Haze is a pollution weather phenomenon that has been widely concerned by people in recent years. It has a significant impact on people’s production, life, and health. This study focuses on large-scale haze weather that happened in eastern China in late January 2021. The research uses multi-party data and synoptic analysis methods to analyze the occurrence, evolution, and end of the haze weather. The polar vortex, the change of the atmospheric circulation, the change of the cold air force, the temperature and humidity, and the rain and snow weather are the important reasons for this weathering process. It can be used for reference in future research on haze weather.
文摘With the rapid development of industrialisation and urbanisation, China is facing the challenge of severe HF (Haze-Fog) pollution. This essay compares the advantages and disadvantages of China’s HF management and summarizes the important lessons China can teach the rest of the world about applying this tactic. China’s capabilities in the digital economy, National Innovation Demonstration Zones, and urban innovation systems are examined in this article, along with its shortcomings in information mechanisms and pollution sources. This essay also summarizes China’s achievements, particularly regarding local autonomy. The essay goes on to say, however, that China is probably going to be under more pressure to manage HF in the future, both in terms of long-term solutions and the economy.
基金Supported by Liaoning Meteorology Bureau Scientific Research Fund (200808)China Meterological Administration Shenyang Atmospheric Science Research Bureau Scieatific Resarch Fund ProgramScientific Research Special Fund for Public Welfare Industry in 2008 (GYHY20080620)
文摘Based on meteorology and environment monitoring data in January,2008 in Liaoning central region,a typical haze weather process was analyzed.The results showed that haze was formed due to the stable weather condition in the earth surface and upper air layer in Liaoning central region.Especially because that the weakening of atmospheric dispersion ability in the urban boundary layer that was 500 m under earth surface,caused the pollutant in the air can not disperse.Thus,it resulted in the deterioration of air quality,increase of concentration of particulate mass,and declination of visibility.And in the end,haze formed.