First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relat...First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.展开更多
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ...As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.展开更多
The urban microclimate has direct implications with regards to thermal comfort indoors as well as outdoors. In the tropics, the outdoor thermal comfort conditions during daytime are often far above acceptable comfort ...The urban microclimate has direct implications with regards to thermal comfort indoors as well as outdoors. In the tropics, the outdoor thermal comfort conditions during daytime are often far above acceptable comfort standards due to intense solar radiation and high solar elevations. This study aims to know effects of simple and fundamental building forms on microclimate and outdoor thermal comfort in a high dense tropical city, focusing on Dhaka, Bangladesh as a study city. Investigations are carried out on existing area and model areas with modified building forms (in respect of height and shape) on the microclimate as well as on outdoor thermal comfort during daytime in summer. This study has demonstrated that the model using less ground coverage and higher buildings can offer a better thermal climate than the models using maximum ground coverage in a high-density tropical city.展开更多
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and...Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.展开更多
Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by opti...Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by optimizing urban planning and management policies.This study investigated building height evolution and its influencing factors over approximately half a century(1960–2017)in Guangzhou,China.The results indicated that the logarithmic declines in height,quantity,and area of urban buildings followed Zapf’s law,which restricts the three-dimensional shape of the urban form.The urban building height decreased from the center to the periphery of the city and decreased with decreasing altitude and increasing distance from main roads.These characteristics constituted the three main spatial differentiation rules of building height in the central district of Guangzhou,and all exhibited a logarithmic decrease,which gradually strengthened over time.The development of a double-layered height structure of low-rise and high-rise buildings between 1990 and 2017 was a notable manifestation of the increase in vertical urban height over time.The three factors of city center,altitude,and accessibility,which represent centrality,low relief,proximity to water,and proximity to road networks,highlighted the roles of traffic accessibility and commercial attraction in building height evolution.The importance of location macroscopically depends on the combined effect of the geographical pattern,urban planning,and market forces of cities located on a plain near hill or by a river.The principle of profit orientation restricted spatiotemporal building height patterns.展开更多
It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this ...It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.展开更多
Two case studies,referring to historic Italian buildings housing city halls,provide an opportunity to investigate the design of non-standard elements aimed at protecting masonry vaults,with particular reference to the...Two case studies,referring to historic Italian buildings housing city halls,provide an opportunity to investigate the design of non-standard elements aimed at protecting masonry vaults,with particular reference to the preliminary works prior to the actual structural restoration work.There is in fact a phase in which it is a priority to secure the vault to avert possible risks to the users of that portion of the building.This phase is temporarily intermediate between the detection and aggravation of injuries and the renovation and consolidation project.Although these are provisional works,they are intended for buildings that are often public and therefore intended for a wide range of users,such as schools,offices or monumental buildings.In analyzing traditional techniques and systems used in similar cases,the possibility of developing evolutionary aspects with respect to,above all,simple shoring techniques emerged.In these areas,hybrids between a structural and architectural project,it is possible to reconcile static requirements with architectural techniques of space management,attentive to the quality of the interior and the integration of the provisional work with the reference context.展开更多
Sino-African relations have progressed significantly on the economic front over the past one and half decade ever since the establishment of the Forum on China-Africa Cooperation(FOCAC) in October 2000.For example。
Innovative,sustainable construction products are emerging in response to market demands.One potential product,insulating concrete forms(ICFs),offers possible advantages in energy and environmental performance wh...Innovative,sustainable construction products are emerging in response to market demands.One potential product,insulating concrete forms(ICFs),offers possible advantages in energy and environmental performance when compared with traditional construction materials.Even though ICFs are in part derived from a petroleum-based product,the benefits in the use phase outweigh the impacts of the raw material extraction and manufacturing phase.This paper quantitatively measures ICFs’performance through a comparative life cycle assessment of wall sections comprised of ICF and traditional wood-frame.The life cycle stages included raw materials extraction and manufacturing,construction,use and end of life for a 2,450 square foot house in Pittsburgh,Pennsylvania.Results showed that even though building products such as ICFs are energy intensive to produce and thus have higher environmental impacts in the raw materials extraction and manufacturing phase,the use phase dominated in the life cycle.For the use phase,the home constructed of ICFs consumed 20 percent less energy when compared to a traditional wood-frame structure.The results of the impact assessment show that ICFs have higher impacts over wood homes in most impact categories.The high impacts arise from the raw materials extraction and manufacturing phase of ICFs.But there are a number of embedded unit processes such as disposal of solid waste and transport of natural gas that contribute to this high impact and identifying the top unit process and substance contributors to the impact category is not intuitive.Selecting different unit processes or impact assessment methods will yield dissimilar results and the tradeoffs associated with every building product should be considered after studying the entire life cycle in detail.展开更多
气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座...气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座公共建筑的入口设计形式进行特征提取,归纳出了平入口、有雨棚的平入口和凹入口三类典型入口形式模型;利用计算流体力学(CFD)数值模拟方法建立了空气流场和气溶胶扩散分布模型,对模型的不同精度网格展开模拟结果的网格无关性验证;并在此基础上,利用现场实测数据进行了模拟数据的对比验证;探讨了三类不同入口形式下室内气溶胶的扩散路径和分布特征。结果表明:1)室内气溶胶浓度与空气流动之间存在显著的关联性。空气流动速率越大,气溶胶浓度越低;空气流动速率越小,气溶胶浓度越高;2)转角空间或狭小空间容易形成涡流,涡流会导致空气滞留,阻碍气溶胶扩散,进而导致局部区域的气溶胶浓度增加;3)有雨棚的平入口的气溶胶进入量略小于无雨棚平入口,占比无雨棚平入口的92.8%,但其室内气溶胶残留量为23.6%,高出无雨棚平入口7.3%;4)室内气溶胶残留量占比从高到低排列为:有雨棚的平入口(23.6%)>平入口(16.3%)>凹入口(14.8%),凹入口在自然通风情况下气溶胶的扩散得到了有效抑制,室内气溶胶残留量最低。建议在设计中采用凹型入口,避免采用大体量雨棚,有利于自然通风,提升建筑出入口空间的空气质量。展开更多
文摘First, the high-rise building structure design process is divided into three relevant steps, that is, scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms. Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method provides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.
基金Supported by the National Natural Science Foundation of China(No.61871021,51704115)。
文摘As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.
文摘The urban microclimate has direct implications with regards to thermal comfort indoors as well as outdoors. In the tropics, the outdoor thermal comfort conditions during daytime are often far above acceptable comfort standards due to intense solar radiation and high solar elevations. This study aims to know effects of simple and fundamental building forms on microclimate and outdoor thermal comfort in a high dense tropical city, focusing on Dhaka, Bangladesh as a study city. Investigations are carried out on existing area and model areas with modified building forms (in respect of height and shape) on the microclimate as well as on outdoor thermal comfort during daytime in summer. This study has demonstrated that the model using less ground coverage and higher buildings can offer a better thermal climate than the models using maximum ground coverage in a high-density tropical city.
文摘Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.
基金Under the auspices of National Natural Science Foundation of China(No.41771001)Science and Technology Planning Project Funds of Guangzhou(No.201704020136)。
文摘Understanding the spatiotemporal patterns of three-dimensional urban forms,especially building height,can have important implications for improving urban air quality and mitigating the urban heat island effect by optimizing urban planning and management policies.This study investigated building height evolution and its influencing factors over approximately half a century(1960–2017)in Guangzhou,China.The results indicated that the logarithmic declines in height,quantity,and area of urban buildings followed Zapf’s law,which restricts the three-dimensional shape of the urban form.The urban building height decreased from the center to the periphery of the city and decreased with decreasing altitude and increasing distance from main roads.These characteristics constituted the three main spatial differentiation rules of building height in the central district of Guangzhou,and all exhibited a logarithmic decrease,which gradually strengthened over time.The development of a double-layered height structure of low-rise and high-rise buildings between 1990 and 2017 was a notable manifestation of the increase in vertical urban height over time.The three factors of city center,altitude,and accessibility,which represent centrality,low relief,proximity to water,and proximity to road networks,highlighted the roles of traffic accessibility and commercial attraction in building height evolution.The importance of location macroscopically depends on the combined effect of the geographical pattern,urban planning,and market forces of cities located on a plain near hill or by a river.The principle of profit orientation restricted spatiotemporal building height patterns.
文摘It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.
文摘Two case studies,referring to historic Italian buildings housing city halls,provide an opportunity to investigate the design of non-standard elements aimed at protecting masonry vaults,with particular reference to the preliminary works prior to the actual structural restoration work.There is in fact a phase in which it is a priority to secure the vault to avert possible risks to the users of that portion of the building.This phase is temporarily intermediate between the detection and aggravation of injuries and the renovation and consolidation project.Although these are provisional works,they are intended for buildings that are often public and therefore intended for a wide range of users,such as schools,offices or monumental buildings.In analyzing traditional techniques and systems used in similar cases,the possibility of developing evolutionary aspects with respect to,above all,simple shoring techniques emerged.In these areas,hybrids between a structural and architectural project,it is possible to reconcile static requirements with architectural techniques of space management,attentive to the quality of the interior and the integration of the provisional work with the reference context.
文摘Sino-African relations have progressed significantly on the economic front over the past one and half decade ever since the establishment of the Forum on China-Africa Cooperation(FOCAC) in October 2000.For example。
文摘Innovative,sustainable construction products are emerging in response to market demands.One potential product,insulating concrete forms(ICFs),offers possible advantages in energy and environmental performance when compared with traditional construction materials.Even though ICFs are in part derived from a petroleum-based product,the benefits in the use phase outweigh the impacts of the raw material extraction and manufacturing phase.This paper quantitatively measures ICFs’performance through a comparative life cycle assessment of wall sections comprised of ICF and traditional wood-frame.The life cycle stages included raw materials extraction and manufacturing,construction,use and end of life for a 2,450 square foot house in Pittsburgh,Pennsylvania.Results showed that even though building products such as ICFs are energy intensive to produce and thus have higher environmental impacts in the raw materials extraction and manufacturing phase,the use phase dominated in the life cycle.For the use phase,the home constructed of ICFs consumed 20 percent less energy when compared to a traditional wood-frame structure.The results of the impact assessment show that ICFs have higher impacts over wood homes in most impact categories.The high impacts arise from the raw materials extraction and manufacturing phase of ICFs.But there are a number of embedded unit processes such as disposal of solid waste and transport of natural gas that contribute to this high impact and identifying the top unit process and substance contributors to the impact category is not intuitive.Selecting different unit processes or impact assessment methods will yield dissimilar results and the tradeoffs associated with every building product should be considered after studying the entire life cycle in detail.
文摘气溶胶是悬浮于空气中的微小颗粒物质,对人体呼吸系统健康具有严重危害。作为室内外空气流通的关键过渡空间,公共建筑入口的不同设计形式对室内空气质量(IAQ,Indoor Air Quality)产生显著影响。通过文献综述和实地调研,选取合肥市36座公共建筑的入口设计形式进行特征提取,归纳出了平入口、有雨棚的平入口和凹入口三类典型入口形式模型;利用计算流体力学(CFD)数值模拟方法建立了空气流场和气溶胶扩散分布模型,对模型的不同精度网格展开模拟结果的网格无关性验证;并在此基础上,利用现场实测数据进行了模拟数据的对比验证;探讨了三类不同入口形式下室内气溶胶的扩散路径和分布特征。结果表明:1)室内气溶胶浓度与空气流动之间存在显著的关联性。空气流动速率越大,气溶胶浓度越低;空气流动速率越小,气溶胶浓度越高;2)转角空间或狭小空间容易形成涡流,涡流会导致空气滞留,阻碍气溶胶扩散,进而导致局部区域的气溶胶浓度增加;3)有雨棚的平入口的气溶胶进入量略小于无雨棚平入口,占比无雨棚平入口的92.8%,但其室内气溶胶残留量为23.6%,高出无雨棚平入口7.3%;4)室内气溶胶残留量占比从高到低排列为:有雨棚的平入口(23.6%)>平入口(16.3%)>凹入口(14.8%),凹入口在自然通风情况下气溶胶的扩散得到了有效抑制,室内气溶胶残留量最低。建议在设计中采用凹型入口,避免采用大体量雨棚,有利于自然通风,提升建筑出入口空间的空气质量。