The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the...The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.展开更多
Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials a...Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and tr...The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and transfer function by using an improved acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. As a result, the frequency characteristics of the acoustic absorption coefficient against the frequency showed a maximum value at the local frequency. The peak frequency of the acoustic absorption coefficient depended on the thickness of the background air space and the thickness of the perforated plate. As the flow rate increased through the micropores, the peak level of the acoustic absorption coefficient also increased until a flow rate of 80?l /min. As the flow rate further increased, the peak level of the acoustic absorption coefficient decreased and that of the high frequency band increased.展开更多
At turbomachinery relevant flow conditions the boundary layers are often transitional with laminar-to-turbulent transition occurring. The characteristics of the main flow can depend highly on the state of the boundary...At turbomachinery relevant flow conditions the boundary layers are often transitional with laminar-to-turbulent transition occurring. The characteristics of the main flow can depend highly on the state of the boundary layer. Therefore it can be vitally important for the designer to understand the process of laminar-to-turbulent transition and to determine the position and length of the transitional region. In this paper the flow over a flat plate is experimentally studied in order to investigate and better understand transitional flow. Preston tube measurements as well as a thermographic camera system were performed for two different inlet velocities in order to determine the position of the transitional zone. The results of the experiment are compared to numerical flow solutions using a common transition model to determine its capability. The simulation has been performed with the two commercial codes CFX and Fluent by Ansys and an in-house code called LINARS. As a result of this study, a better understanding of the experimental and numerical methods for determining transition shall be given.展开更多
The pressure characteristics in the throats of Venturi tube and behind triangular multi-orifice plates were experimentally investigated by a pressure data acquisition system of SINOCERA-YE6263, and the effect of throa...The pressure characteristics in the throats of Venturi tube and behind triangular multi-orifice plates were experimentally investigated by a pressure data acquisition system of SINOCERA-YE6263, and the effect of throat length of Venturi tube, different geometric parameters of multi-orifice plate and their combinations on the time-averaged pressure, cavitation number, and pressure frequency spectrum, correlation function calculated by FFT were analyzed. The experimental results showed that the throat length of L/R= 40 made for improving the fluctuation energy and promoting the uniform energy distribution, appropriately decreasing the size and increasing the number of orifice could accelerate the uniform distribution of the fluctuation energy in frequency domain. In the combination reactors, the cavitation number behind multi-orifice plates was lower and the fluctuation of correlation function was more intense.展开更多
基金The authors are grateful for the financial support of the National Key Research and Development Program of China(2017YFC0703500).
文摘The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.
基金financial support provided by UGC-DAE-CSR (CSR-KN/CRS-04/201213/738) through fellowship
文摘Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
文摘The present paper focuses on the effect of air jets through a perforated thin plate on the characteristics of an acoustic absorption coefficient. We measured the flow rate, internal pressure, acoustic pressure, and transfer function by using an improved acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. As a result, the frequency characteristics of the acoustic absorption coefficient against the frequency showed a maximum value at the local frequency. The peak frequency of the acoustic absorption coefficient depended on the thickness of the background air space and the thickness of the perforated plate. As the flow rate increased through the micropores, the peak level of the acoustic absorption coefficient also increased until a flow rate of 80?l /min. As the flow rate further increased, the peak level of the acoustic absorption coefficient decreased and that of the high frequency band increased.
文摘At turbomachinery relevant flow conditions the boundary layers are often transitional with laminar-to-turbulent transition occurring. The characteristics of the main flow can depend highly on the state of the boundary layer. Therefore it can be vitally important for the designer to understand the process of laminar-to-turbulent transition and to determine the position and length of the transitional region. In this paper the flow over a flat plate is experimentally studied in order to investigate and better understand transitional flow. Preston tube measurements as well as a thermographic camera system were performed for two different inlet velocities in order to determine the position of the transitional zone. The results of the experiment are compared to numerical flow solutions using a common transition model to determine its capability. The simulation has been performed with the two commercial codes CFX and Fluent by Ansys and an in-house code called LINARS. As a result of this study, a better understanding of the experimental and numerical methods for determining transition shall be given.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179172)
文摘The pressure characteristics in the throats of Venturi tube and behind triangular multi-orifice plates were experimentally investigated by a pressure data acquisition system of SINOCERA-YE6263, and the effect of throat length of Venturi tube, different geometric parameters of multi-orifice plate and their combinations on the time-averaged pressure, cavitation number, and pressure frequency spectrum, correlation function calculated by FFT were analyzed. The experimental results showed that the throat length of L/R= 40 made for improving the fluctuation energy and promoting the uniform energy distribution, appropriately decreasing the size and increasing the number of orifice could accelerate the uniform distribution of the fluctuation energy in frequency domain. In the combination reactors, the cavitation number behind multi-orifice plates was lower and the fluctuation of correlation function was more intense.