Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)such that 1-r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the...Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)such that 1-r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the exact asymptotics of P(sup_(t∈[0,T])X(t) > x) is considered, as x → ∞.展开更多
This work applies non-stationary random processes to resilience of power distribution under severe weather. Power distribution, the edge of the energy infrastructure, is susceptible to external hazards from severe wea...This work applies non-stationary random processes to resilience of power distribution under severe weather. Power distribution, the edge of the energy infrastructure, is susceptible to external hazards from severe weather. Large-scale power failures often occur, resulting in millions of people without electricity for days. However, the problem of large-scale power failure, recovery and resilience has not been formulated rigorously nor studied systematically. This work studies the resilience of power distribution from three aspects. First, we derive non-stationary random processes to model large-scale failures and recoveries. Transient Little’s Law then provides a simple approximation of the entire life cycle of failure and recovery through a queue at the network-level. Second, we define time-varying resilience based on the non-stationary model. The resilience metric characterizes the ability of power distribution to remain operational and recover rapidly upon failures. Third, we apply the non-stationary model and the resilience metric to large-scale power failures caused by Hurricane Ike. We use the real data from the electric grid to learn time-varying model parameters and the resilience metric. Our results show non-stationary evolution of failure rates and recovery times, and how the network resilience deviates from that of normal operation during the hurricane.展开更多
In this paper we propose a numerical method to estimate the fractal dimension of stationary Gaussian stochastic processes using the random Euler numerical scheme and based on an analytical formulation of the fractal d...In this paper we propose a numerical method to estimate the fractal dimension of stationary Gaussian stochastic processes using the random Euler numerical scheme and based on an analytical formulation of the fractal dimension for filtered stochastic signals. The discretization of continuous time processes through this random scheme allows us to find, numerically, the expected value, variance and correlation functions at any point of time. This alternative method for estimating the fractal dimension is easy to implement and requires no sophisticated routines. We use simulated data sets for stationary processes of the type Random Ornstein Uhlenbeck to graphically illustrate the results and compare them with those obtained whit the box counting theorem.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regr...针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。展开更多
For high resolution radar, the echoes of target come from several points rather than one point as in low resolution radar. In this case the target is called an extended target. This paper presents two CFAR detectors f...For high resolution radar, the echoes of target come from several points rather than one point as in low resolution radar. In this case the target is called an extended target. This paper presents two CFAR detectors for such a target in non Gaussian clutter, which are CA CFAR and OS CFAR detectors. The detection performances of the two detectors are evaluated.展开更多
In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its loca...In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its local time.展开更多
This paper proposes a new deterministic envelope function to define non-stationary stochastic processes modeling seismic ground motion accelerations. The proposed envelope function modulates the amplitude of the time ...This paper proposes a new deterministic envelope function to define non-stationary stochastic processes modeling seismic ground motion accelerations. The proposed envelope function modulates the amplitude of the time history of a stationary filtered white noise to properly represent the amplitude variations in the time histories of the ground motion accelerations. This function depends on two basic seismological indices: the Peak Ground Acceleration (PGA) and the kind of soil. These indices are widely used in earthquake engineering. Firstly, the envelope function is defined analytically from the Saragoni Hart’s function. Then its parameters are identified for a set of selected real records of earthquake collected in PEER Next Generation Attenuation database. Finally, functions of the parameters depending on the Peak Ground Acceleration and the kind of soil are defined from these identified values of the parameters of the envelope function through a regression analysis.展开更多
Let {X(t), t ≥ 0} be a standard(zero-mean, unit-variance) stationary Gaussian process with correlation function r(·) and continuous sample paths. In this paper, we consider the maxima M(T) = max{X(t), ...Let {X(t), t ≥ 0} be a standard(zero-mean, unit-variance) stationary Gaussian process with correlation function r(·) and continuous sample paths. In this paper, we consider the maxima M(T) = max{X(t), t∈ [0, T ]} with random index TT, where TT /T converges to a non-degenerate distribution or to a positive random variable in probability, and show that the limit distribution of M(TT) exists under some additional conditions related to the correlation function r(·).展开更多
In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Caussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-pr...In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Caussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-products, the authors also obtain several weak convergence results which extended the existing results.展开更多
The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied....The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.展开更多
基金Supported by the Scientific Research Fund of Sichuan Provincial Education Department(12ZB082)the Scientific research cultivation project of Sichuan University of Science&Engineering(2013PY07)+1 种基金the Scientific Research Fund of Shanghai University of Finance and Economics(2017110080)the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing(2018QZJ01)
文摘Let {X(t), t ≥ 0} be a centered stationary Gaussian process with correlation r(t)such that 1-r(t) is asymptotic to a regularly varying function. With T being a nonnegative random variable and independent of X(t), the exact asymptotics of P(sup_(t∈[0,T])X(t) > x) is considered, as x → ∞.
文摘This work applies non-stationary random processes to resilience of power distribution under severe weather. Power distribution, the edge of the energy infrastructure, is susceptible to external hazards from severe weather. Large-scale power failures often occur, resulting in millions of people without electricity for days. However, the problem of large-scale power failure, recovery and resilience has not been formulated rigorously nor studied systematically. This work studies the resilience of power distribution from three aspects. First, we derive non-stationary random processes to model large-scale failures and recoveries. Transient Little’s Law then provides a simple approximation of the entire life cycle of failure and recovery through a queue at the network-level. Second, we define time-varying resilience based on the non-stationary model. The resilience metric characterizes the ability of power distribution to remain operational and recover rapidly upon failures. Third, we apply the non-stationary model and the resilience metric to large-scale power failures caused by Hurricane Ike. We use the real data from the electric grid to learn time-varying model parameters and the resilience metric. Our results show non-stationary evolution of failure rates and recovery times, and how the network resilience deviates from that of normal operation during the hurricane.
文摘In this paper we propose a numerical method to estimate the fractal dimension of stationary Gaussian stochastic processes using the random Euler numerical scheme and based on an analytical formulation of the fractal dimension for filtered stochastic signals. The discretization of continuous time processes through this random scheme allows us to find, numerically, the expected value, variance and correlation functions at any point of time. This alternative method for estimating the fractal dimension is easy to implement and requires no sophisticated routines. We use simulated data sets for stationary processes of the type Random Ornstein Uhlenbeck to graphically illustrate the results and compare them with those obtained whit the box counting theorem.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.
文摘针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。
文摘For high resolution radar, the echoes of target come from several points rather than one point as in low resolution radar. In this case the target is called an extended target. This paper presents two CFAR detectors for such a target in non Gaussian clutter, which are CA CFAR and OS CFAR detectors. The detection performances of the two detectors are evaluated.
基金supported by the National Natural Science Foundation of China (No. 10871177)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20060335032)the Natural Science Foundation of Zhejiang Province of China (No. Y7080044)
文摘In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its local time.
文摘This paper proposes a new deterministic envelope function to define non-stationary stochastic processes modeling seismic ground motion accelerations. The proposed envelope function modulates the amplitude of the time history of a stationary filtered white noise to properly represent the amplitude variations in the time histories of the ground motion accelerations. This function depends on two basic seismological indices: the Peak Ground Acceleration (PGA) and the kind of soil. These indices are widely used in earthquake engineering. Firstly, the envelope function is defined analytically from the Saragoni Hart’s function. Then its parameters are identified for a set of selected real records of earthquake collected in PEER Next Generation Attenuation database. Finally, functions of the parameters depending on the Peak Ground Acceleration and the kind of soil are defined from these identified values of the parameters of the envelope function through a regression analysis.
基金Supported by National Science Foundation of China(Grant No.11326175)Research Start-up Foundation of Jiaxing University(Grant No.70512021)
文摘Let {X(t), t ≥ 0} be a standard(zero-mean, unit-variance) stationary Gaussian process with correlation function r(·) and continuous sample paths. In this paper, we consider the maxima M(T) = max{X(t), t∈ [0, T ]} with random index TT, where TT /T converges to a non-degenerate distribution or to a positive random variable in probability, and show that the limit distribution of M(TT) exists under some additional conditions related to the correlation function r(·).
基金Project supported by the National Natural Science Foundation of China(No.11071182)
文摘In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Caussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-products, the authors also obtain several weak convergence results which extended the existing results.
基金Project supported by the National Natural Science Foundation of China.
文摘The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.