In this paper, we consider constrained denumerable state non-stationary Markov decision processes (MDPs, for short) with expected total reward criterion. By the mechanics of intro- ducing Lagrange multiplier and using...In this paper, we consider constrained denumerable state non-stationary Markov decision processes (MDPs, for short) with expected total reward criterion. By the mechanics of intro- ducing Lagrange multiplier and using the methods of probability and analytics, we prove the existence of constrained optimal policies. Moreover, we prove that a constrained optimal policy may be a Markov policy, or be a randomized Markov policy that randomizes between two Markov policies, that differ in only one state.展开更多
Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) chann...Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) channels. It consists of a line-of-sight(Lo S) and non-line-of-sight(NLo S) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e.the temporal autocorrelation function(ACF) and spatial cross correlation function(CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture.展开更多
This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the ...This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.展开更多
基金the National Natural Science Foundation of China !19901038by Natural Science Foundation of Guangdong Province and by Found
文摘In this paper, we consider constrained denumerable state non-stationary Markov decision processes (MDPs, for short) with expected total reward criterion. By the mechanics of intro- ducing Lagrange multiplier and using the methods of probability and analytics, we prove the existence of constrained optimal policies. Moreover, we prove that a constrained optimal policy may be a Markov policy, or be a randomized Markov policy that randomizes between two Markov policies, that differ in only one state.
基金supported by the National Natural Science Foundation of China,No.62271250the National Key Scientific Instrument and Equipment Development Project,No.61827801+3 种基金Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry),No.BE2022067,BE2022067-1 and BE2022067-3the Natural Science Foundation of Jiangsu Province,No.BK20211182the open research fund of National Mobile Communications Research Laboratory,Southeast University,No.2022D04the Experimental technology research and development,No.SYJS202304Z。
文摘Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) channels. It consists of a line-of-sight(Lo S) and non-line-of-sight(NLo S) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e.the temporal autocorrelation function(ACF) and spatial cross correlation function(CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture.
文摘This study aims at establishing if climate change exists in the Niger Delta environment using non-stationary rainfall Intensity-Duration-Frequency (IDF) modelling incorporating time-variant parameters. To compute the intensity levels, the open-access R-studio software was used based on the General Extreme Value (GEV) distribution function. Among the four linear parameter models adopted for integrating time as a covariate, the fourth linear model incorporating scale and location with the shape function constant produced the least corrected Akaike Information Criteria (AICc), varying between 306.191 to 101.497 for 15 and 1440 minutes, respectively, selected for calibration of the GEV distribution equation. The non-stationary intensities yielded higher values above those of stationary models, proving that the assumption of stationary IDF models underestimated extreme events. The difference of 13.71 mm/hr (22.71%) to 14.26 mm/hr (17.0%) intensities implies an underestimation of the peak flood from a stationary IDF curve. The statistical difference at a 95% confidence level between stationary and non-stationary models was significant, confirming evidence of climatic change influenced by time-variant parameters. Consequently, emphasis should be on applying shorter-duration storms for design purposes occurring with higher intensities to help reduce the flood risk and resultant infrastructural failures.