Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the c...Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the carcinogenesis of heparoma. Methods: The recombinant plasmid(PCXN2-NS4B, PCXN2-P53) and the empty, vector were transfected or co-transfected into Chang liver cells with liposome. Screening was performed with G418. Plasmid mRNA was detected by RT-PCR. The pro rein expressions of c-Myc and ras genes were analyzed by immunocytochemistry. The expressions of wild-type P53 (wtp53) gene were detected by in situ hybridization. TUNEL(flow cytometry) was used for assessing the rate of apoptosis. Results:No expression of c-Myc gene was found in PCXN2 group. The expression of c-Myc gene in NS4B group was 21.3% + 1.2%. The ex pression of ras gene in PCXN2 group was lower than that in NS4B group. Compared with PCXN2 group, the expression of P53 mRNA was not promoted or inhibited in NS4B group. But the expression of P53 mRNA in NS4B-P53 group was lower than that in P53 group. In PCXN2, NS4B, P53 and NS4B-P53 group, the rates of apoptosis were 17.02% ± 1.24%, 11.94% ± 2.24%, 25.84% ± 3.49% and 18.34% ± 1.55% respectively. Conclusion :HCV NS4B induces the expression of c-Myc and ras gene. HCV NS4B may play a role in the inhibition of cell death through P53-dependent manner. Results from this study suggested that HCV NS4B might contribute to the viral carcinogenesis.展开更多
Zika virus(ZIKV)evolves non-structural proteins to evade immune response and ensure efficient replication in the host cells.Cholesterol metabolic enzyme 7-dehydrocholesterol reductase(DHCR7)was recently reported to im...Zika virus(ZIKV)evolves non-structural proteins to evade immune response and ensure efficient replication in the host cells.Cholesterol metabolic enzyme 7-dehydrocholesterol reductase(DHCR7)was recently reported to impact innate immune responses in ZIKV infection.However,the vital non-structural protein and mechanisms involved in DHCR7-mediated viral evasion are not well elucidated.In this study,we demonstrated that ZIKV infection facilitated DHCR7 expression.Notably,the upregulated DHCR7 in turn facilitated ZIKV infection and blocking DHCR7 suppressed ZIKV infection.Mechanically,ZIKV non-structural protein 4B(NS4B)interacted with DHCR7 to induce DHCR7 expression.Moreover,DHCR7 inhibited TANK-binding kinase 1(TBK1)and interferon regulatory factor 3(IRF3)phosphorylation,which resulted in the reduction of interferon-beta(IFN-β)and interferon-stimulated genes(ISGs)productions.Therefore,we propose that ZIKV NS4B binds to DHCR7 to repress TBK1 and IRF3 activation,which in turn inhibits IFN-βand ISGs,and thereby facilitating ZIKV evasion.This study broadens the insights on how viral non-structural proteins antagonize innate immunity to facilitate viral infection via cholesterol metabolic enzymes and intermediates.展开更多
B7-H4 has been shown to inhibit T cell proliferation, cytokine production and cell cycle in vitro. B7-H4 deficient mice develop exacerbated disease in the mouse models of Rheumatoid Arthritis (RA), Type 1 Diabetes (T1...B7-H4 has been shown to inhibit T cell proliferation, cytokine production and cell cycle in vitro. B7-H4 deficient mice develop exacerbated disease in the mouse models of Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Experimental Autoimmune Encephalomyelitis (EAE). On the other hand, B7-H4-Ig fusion protein has been documented to assuage the symptoms in mouse models of RA, T1D, and multiple sclerosis in vivo. In the present study, B7-H4-Ig bound to the majority of human peripheral blood monocytes and NK cells, but not to either normal or activated T cells. B7-H4-Ig fusion protein was assayed for its effects in allogeneic mixed lymphocyte culture (MLC) systems. Soluble B7- H4-Ig had no significant effect in the MLC, but with a tendency to promote allogeneic response. Immobilized, but not soluble B7-H4-Ig inhibited plastic bound anti-CD3 mediated activation of T cells. This inhibition however was largely due to B7-H4-Ig mediated displacement of anti-CD3 antibody from the plastic plate. Finally, B7-H4-Ig had no effect on the cytotoxicity mediated by NK and LAK cells in PBMC. Our findings thus caution against the interpretation of suppressive effect observed solely in plate-bound anti-CD3 mediated T cell co-stimulation in vitro.展开更多
基金Scientific Research Fund of Sichuan Provincial Education Department(20003531)
文摘Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the carcinogenesis of heparoma. Methods: The recombinant plasmid(PCXN2-NS4B, PCXN2-P53) and the empty, vector were transfected or co-transfected into Chang liver cells with liposome. Screening was performed with G418. Plasmid mRNA was detected by RT-PCR. The pro rein expressions of c-Myc and ras genes were analyzed by immunocytochemistry. The expressions of wild-type P53 (wtp53) gene were detected by in situ hybridization. TUNEL(flow cytometry) was used for assessing the rate of apoptosis. Results:No expression of c-Myc gene was found in PCXN2 group. The expression of c-Myc gene in NS4B group was 21.3% + 1.2%. The ex pression of ras gene in PCXN2 group was lower than that in NS4B group. Compared with PCXN2 group, the expression of P53 mRNA was not promoted or inhibited in NS4B group. But the expression of P53 mRNA in NS4B-P53 group was lower than that in P53 group. In PCXN2, NS4B, P53 and NS4B-P53 group, the rates of apoptosis were 17.02% ± 1.24%, 11.94% ± 2.24%, 25.84% ± 3.49% and 18.34% ± 1.55% respectively. Conclusion :HCV NS4B induces the expression of c-Myc and ras gene. HCV NS4B may play a role in the inhibition of cell death through P53-dependent manner. Results from this study suggested that HCV NS4B might contribute to the viral carcinogenesis.
基金supported by the National Natural Science Foundation of China(81730061,81802008)the Guangdong Basic and Applied Basic Research Foundation(2021A1515011272).
文摘Zika virus(ZIKV)evolves non-structural proteins to evade immune response and ensure efficient replication in the host cells.Cholesterol metabolic enzyme 7-dehydrocholesterol reductase(DHCR7)was recently reported to impact innate immune responses in ZIKV infection.However,the vital non-structural protein and mechanisms involved in DHCR7-mediated viral evasion are not well elucidated.In this study,we demonstrated that ZIKV infection facilitated DHCR7 expression.Notably,the upregulated DHCR7 in turn facilitated ZIKV infection and blocking DHCR7 suppressed ZIKV infection.Mechanically,ZIKV non-structural protein 4B(NS4B)interacted with DHCR7 to induce DHCR7 expression.Moreover,DHCR7 inhibited TANK-binding kinase 1(TBK1)and interferon regulatory factor 3(IRF3)phosphorylation,which resulted in the reduction of interferon-beta(IFN-β)and interferon-stimulated genes(ISGs)productions.Therefore,we propose that ZIKV NS4B binds to DHCR7 to repress TBK1 and IRF3 activation,which in turn inhibits IFN-βand ISGs,and thereby facilitating ZIKV evasion.This study broadens the insights on how viral non-structural proteins antagonize innate immunity to facilitate viral infection via cholesterol metabolic enzymes and intermediates.
文摘B7-H4 has been shown to inhibit T cell proliferation, cytokine production and cell cycle in vitro. B7-H4 deficient mice develop exacerbated disease in the mouse models of Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Experimental Autoimmune Encephalomyelitis (EAE). On the other hand, B7-H4-Ig fusion protein has been documented to assuage the symptoms in mouse models of RA, T1D, and multiple sclerosis in vivo. In the present study, B7-H4-Ig bound to the majority of human peripheral blood monocytes and NK cells, but not to either normal or activated T cells. B7-H4-Ig fusion protein was assayed for its effects in allogeneic mixed lymphocyte culture (MLC) systems. Soluble B7- H4-Ig had no significant effect in the MLC, but with a tendency to promote allogeneic response. Immobilized, but not soluble B7-H4-Ig inhibited plastic bound anti-CD3 mediated activation of T cells. This inhibition however was largely due to B7-H4-Ig mediated displacement of anti-CD3 antibody from the plastic plate. Finally, B7-H4-Ig had no effect on the cytotoxicity mediated by NK and LAK cells in PBMC. Our findings thus caution against the interpretation of suppressive effect observed solely in plate-bound anti-CD3 mediated T cell co-stimulation in vitro.