Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st...Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.展开更多
Recently,Gary et al.published an article elucidating how sugars contribute to the protection of dry protein structure.They utilized an ingenious liquid-observed vapor exchange(LOVE)nuclear magnetic resonance(NMR)metho...Recently,Gary et al.published an article elucidating how sugars contribute to the protection of dry protein structure.They utilized an ingenious liquid-observed vapor exchange(LOVE)nuclear magnetic resonance(NMR)method,providing valuable insights into the protection mechanism of sugars during the drying process.The details of their study can be found in the article available at https://doi.org/10.1021/acs.biochem.2c00692.展开更多
To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig...To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.展开更多
Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest...Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.展开更多
[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the...[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.展开更多
The last decade has been characterized by a decrease in peach(Prunus persica)fruit consumption in many countries,foremost due to unsatisfactory quality.The sugar content is one of the most important quality traits per...The last decade has been characterized by a decrease in peach(Prunus persica)fruit consumption in many countries,foremost due to unsatisfactory quality.The sugar content is one of the most important quality traits perceived by consumers,and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia.Nevertheless,the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait,which is deeply affected by environmental conditions and agronomical management.The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency.Despite the enormous advances in‘omics’sciences,providing powerful tools for plant genotyping,the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability.This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit,the main advances in phenotyping approaches and genetic background,and finally addressing new research priorities and prospective for breeders.展开更多
Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms o...Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms of N effect. Two rice cultivars with high lodging resistance were grown in the field and pot. Four panicle N fertilization treatments were conducted in 2006 and repeated in 2007. The result showed that medium level of panicle N fertilization treatment (NM) enhanced the accumulation and translocation of non-structural carbohydrate (NSC) in the stem and sheath. Compared with non-nitrogen treatment (NO), NM promoted the translocation of labeled ^13C from stem and sheath to grain. But, low level of panicle N fertilization treatment (NL) and high level of panicle N fertilization treatment (NH) showed the negative effect. The endosperm cell, grain length, and grain width of NM increased more quickly than that of NO from 4 to 10 d after anthesis. During the early period of grain filling, sucrose-phosphate synthase (EC 2.4.1.14, SPS) activity were significantly higher for the NM treatment than those of the NL and NH treatments. Sucrose synthase (EC 2.4.1.13, SuSase) activity in the grains was substantially enhanced by NM, with the duration of higher activity being longer than those of the other treatments. At maturing stage, NM significantly increased the filled grain number, the seed-setting rate, and the grain weight compared with NL and NH. The results suggest that NM have a positive effect on the activities of enzymes of physiological importance, thereby increasing the grain size and promoting grain filling.展开更多
Drought is a major production constraint for major fruits and vegetable crops in the tropics. This study was conducted to in- vestigate the effect of limited water supply at three growth stages (vegetative, flowering...Drought is a major production constraint for major fruits and vegetable crops in the tropics. This study was conducted to in- vestigate the effect of limited water supply at three growth stages (vegetative, flowering and fruiting) on the accumulation of proline and soluble sugars in three pepper species. Seeds of the three pepper species, Capsicum chinense Jacq., C. annuum L. and C. frutescens L. were raised in a nursery and the seedlings were transplanted into seventy two plastic pots arranged in a randomized complete block design with three replicates, 25 days after planting. Four water treatments, 200 mL of water supplied twice daily (W1), once in every three days (W2), once in every five days (W3), and zero water supplied throughout growing period (W0) were imposed at three vegetative, flowering, and fruiting growth stages. Data were collected on relative water content, free proline and total soluble sugar. Data collected were subjected to analysis of variance and means were separated using Duncan's multiple range test. Results show that the concentration ofproline and soluble sugar in leaves of the three pepper species were found to be remarkable at the different stages of growth in the stressed plants.展开更多
In order to provide reference for the selection of appropriate pollination varieties facilitating the improvement of the flavor quality of bagged Fuji apple, the metaxenia effects of 5 pollination varieties on sugars,...In order to provide reference for the selection of appropriate pollination varieties facilitating the improvement of the flavor quality of bagged Fuji apple, the metaxenia effects of 5 pollination varieties on sugars, organic acids and flavor quality of bagged Fuji fruit were studied. The results showed that the 5 pollination varieties had significant metaxenia effects on sugars, organic acids and flavor quality of bagged Fuji fruit. For the sugar components, the fruits pollinated with Golden Delicious and Jinxiuhaitang showed higher glucose contents, and the fruit pollinated with Gala had the highest sucrose content; the fruits pollinated by Gala, Golden Delicious and Ruby exhibited higher malic acids, and the oxalic acid content and the succinic acid content were higher in the fruits pollinated with Jinxiuhaitang and Ruby ; and the fruit pollinated with Gala had the highest total sugar content, and the total acid content was higher in the fruits pollinated by Jinxiuhaitang and Ruby. The sugar-acid ratio was higher in the fruits pollinated with Gala and Golden Delicious, and the lowest in the fruit pollinated with Ruby. The senso- ry evaluation of fruits showed that the fruit pollinated with Ruby tasted sour-sweet, while the fruits pollinated with other 4 pollination varieties were sour and sweet moderately.展开更多
This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to ...This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.展开更多
It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2 f factorial design was brought up to derive guidelines ...It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2 f factorial design was brought up to derive guidelines to simulate growth curve and production of sugars by Spirulina (Arthrospira) maxima . The growth curve or accumulation process of sugars was idealized by sets of straight lines limited by phase transfers of growth or accumulation of sugars. Normal analyses of the critical values of the transfers were used to derive their linear relationships with the initial conditions of the experimental factors. These linear functions were called guidelines and were used to simulate the growth curve or accumulation of sugars. Generalization of the guideline technique was determined by the kinetic limitation of nutrient nitrogen or sulfur that was dependent upon their stoichiometric deficiency directly derived from their initial values in the medium. This method uses the initial conditions of culture and does not need measurements of concentrations of nitrate, sulfate and pigments during cultivation. It is a practical and useful alternative way to trace and predict approximately the growth curve and production of sugars by S. maxima .展开更多
[Objectives]This study was conducted to provide basic information for the utilization,quality control and deep processing of‘Xintai Tianhong’hawthorn fruit resources.[Methods]The contents of sugar and acid component...[Objectives]This study was conducted to provide basic information for the utilization,quality control and deep processing of‘Xintai Tianhong’hawthorn fruit resources.[Methods]The contents of sugar and acid components in‘Xintai Tianhong’hawthorn fruit were determined by high performance liquid chromatography(HPLC).[Results]‘Xintai Tianhong’hawthorn fruit contained such four kinds of sugar components as fructose,sorbitol,glucose and sucrose,and such six kinds of organic acid components as oxalic acid,tartaric acid,malic acid,acetic acid,citric acid and succinic acid.The fruit had the highest sucrose content,accounting for 70.53%of the total sugar content,followed by fructose,glucose and sorbitol.For the organic acid components,the content of succinic acid was the highest,accounting for 47.32%of the total acid content,followed by citric acid,malic acid,oxalic acid and tartaric acid,and acetic acid had the lowest content.[Conclusions]‘Xintai Tianhong’hawthorn should be a succinic acid-type hawthorn variety,which can be used as a parent in genetic research and breeding practice.展开更多
Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes w...Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes were identified using in silico B-cell epitope prediction.A synthetic peptide analog of the predicted epitope was used to induce antipeptide IgY production in hens which was purified using affinity chromatography.Presence of purified IgY and its binding specificity were performed by gel electrophoresis and ELISA,respectively.Results:Out of the nine continuous epitopes identified,the sequence at position 193-208(LKVREDYSLECDPAVI)was selected and used to produce anti-peptide IgY.The produced IgY was found to bind to the synthetic analog of the Zika virus NS1 immunogenic epitope but not to other flaviviruses and random peptides from other pathogens.Conclusions:In this study,we identified an immunogenic epitope unique to Zika virus that can be used to develop a serodiagnostic tool that specifically detect Zika virus infection.展开更多
Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink char...Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.展开更多
BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiv...BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease.Furthermore,from natural products,active compounds against vital HCV proteins like non-structural protein 3(NS3)protease could be identified to prevent viral proliferation in the host.AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts.METHODS Full-length NS3 without co-factor non-structural protein 4A(NS4A)and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli.The expressed protein was purified by metal ion affinity chromatography and gel filtration.Citrus fruit extracts were screened using fluorescence resonance energy transfer(FRET)assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry(MS)/MS technique.Among different polyphenols,highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay.RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein.Furthermore,in enzyme kinetic studies,NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3.So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease.FRET assay was developed and validated by the half maximal inhibitory concentration(IC50)values of commercially available inhibitors.Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91%of protease activity.Among the compounds identified by LCMS analysis,hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of-10.98.CONCLUSION Fused NS4A-NS3 protease is functionally more active,which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32μmol/L.展开更多
In order to do a best stipulation on her consumption, it is necessary to know if a food provoke faintly, fairly or highly the glyceamia. The aim of this work was to evaluate the glycemic index of coconut water sugar f...In order to do a best stipulation on her consumption, it is necessary to know if a food provoke faintly, fairly or highly the glyceamia. The aim of this work was to evaluate the glycemic index of coconut water sugar from three coconuts varieties. So, with a cohort of 15 people, a capillary blood was collect after sugar ingestion and the glycaemia read directly on a glucometer. The result showed that the brown and white sugar from coconut sugar can be classified as low glycemic index food. Also, the glycemic indexes of white coconut water sugar are 2 to 3 more lower than that the brown sugar. The glycemic indexes of sugars vary according to the variety of coconut used. The sugars of the coconut palm (MYD) are more hyper-glycemic than those of the hybrid (PB121+) which is more hyperglycemic than the sugars of the coconut palm (WAT). Thus, with a controlled consumption, the coconut water sugars could be the sugars that are best for the health of the healthy and diabetic populations because it raises slightly the postprandial glucose.展开更多
Sugar beet leaves are the major crop waste from sugar beet production, while the unused leaves contain a high number of sugars and polysaccharides. The effects of different enzyme products (cellulase, Cellic CTec2;xyl...Sugar beet leaves are the major crop waste from sugar beet production, while the unused leaves contain a high number of sugars and polysaccharides. The effects of different enzyme products (cellulase, Cellic CTec2;xylanase, Cellic HTec2;and pectinase, Pectinex Ultra SPL) were determined during high-solids enzymatic hydrolysis of sugar beet leaves at 10% total solids (TS) content. Response surface methodology was used to study the effects of enzyme loadings during the hydrolysis of sugar beet leaves for producing fermentable sugars. It was found that both cellulases and pectinases are important enzymes for the hydrolysis of sugar beet leaves. Enzyme loading and reaction time were important factors. Based on the amount of sugars released, a maximum sugar conversion of 82% was achieved after 72 h of hydrolysis using 30 filter paper unit (FPU) g-1 glucan for cellulase and 150 polygalacturonase unit (PGU) g-1 polygalacturonic acid for pectinase, or 37 FPU g-1 glucan for cellulase and 100 PGU g-1 polygalacturonic acid for pectinase. The corresponding sugar yield and sugar concentration were 0.35 g·g-1 TS, and 35 g·l-1, respectively. Sugar conversion ranged from 59% - 70%, 68% - 80%, and 74% - 82% after 24 h, 48 h, and 72 h of hydrolysis depending on the design conditions.展开更多
The fragmentation patterns of anhydro sugars 1—6 in electron impact mass spectrometry have been proposed, and verified by means of metastable ions scanning method.
In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes,...In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes, which participate in fertilization to produce the zygote, the first cell of the sporophyte generation. In addition to this sexual reproduction pathway, some fern species can undergo apospory or apogamy, processes that bypass meiosis or fertilization, respectively, to alternate between the two generations without changing the chromosome number. Apospory is inducible in the laboratory in various fern species simply by altering the sugar level in the media. In sporophytes induced to undergo apospory, sporophyte regeneration is also observed. The ratio of aposporous gametophytes to regenerated sporophytes varies, in a manner consistent with being dependent on sugar level. Whereas the sugar signaling pathway is yet to be elucidated in lower plants, in angiosperms it has been shown to play a regulatory role in controlling essential processes including flowering and embryo development, which give rise to the gametophyte and the next sporophyte generation, respectively. Here, we present evidence for the role of different sugar levels on the balance of apospory and regeneration in the fern Ceratopteris richardii. The demonstration of crosstalk between sugar signaling and the hormone ethylene signaling in angiosperms prompted us to test the effects of this hormone in combination with sugar on apospory vs. regeneration. These results provide insight into how a group of redifferentiating cells determines which generation to become and lay the groundwork for further analysis of this asexual pathway.展开更多
基金This project was finically supported by the R&D Foundation of Jiangsu Province,China(BE2022425)the National Key Research and Development Program of China(2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD).
文摘Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.
基金supported by the National Natural Science Foundation of China(Grants 21973110 and 21925406).
文摘Recently,Gary et al.published an article elucidating how sugars contribute to the protection of dry protein structure.They utilized an ingenious liquid-observed vapor exchange(LOVE)nuclear magnetic resonance(NMR)method,providing valuable insights into the protection mechanism of sugars during the drying process.The details of their study can be found in the article available at https://doi.org/10.1021/acs.biochem.2c00692.
基金This study was supported by the National Natural Science Foundation of China(31960306).
文摘To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.
基金funded by the Talents ans its Youth Project of Xinjiang Production and Construction Corps(38000020924,380000358).
文摘Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.
基金Supported by National Natural Science Fund(30872017)China Science Academy Knowledge Innovation Engineering Project Important Direction Program(KZCX2-YW-331-3,KSCX2-YW-N-066)Central University Basic Science Research Operation Special Fund(XDJK2009C110)~~
文摘[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.
基金This work was supported by MASPES(Italian project aimed at apricot and peach breeding)and FRUITBREEDOMICS(grant 265582–EC-GAUE,7th Framework Program:the views expressed in this work are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission).
文摘The last decade has been characterized by a decrease in peach(Prunus persica)fruit consumption in many countries,foremost due to unsatisfactory quality.The sugar content is one of the most important quality traits perceived by consumers,and the development of novel peach cultivars with sugar-enhanced content is a primary objective of breeding programs to revert the market inertia.Nevertheless,the progress reachable through classical phenotypic selection is limited by the narrow genetic bases of peach breeding material and by the complex quantitative nature of the trait,which is deeply affected by environmental conditions and agronomical management.The development of molecular markers applicable in MAS or MAB has become an essential strategy to boost the selection efficiency.Despite the enormous advances in‘omics’sciences,providing powerful tools for plant genotyping,the identification of the genetic bases of sugar-related traits is hindered by the lack of adequate phenotyping methods that are able to address strong within-plant variability.This review provides an overview of the current knowledge of the metabolic pathways and physiological mechanisms regulating sugar accumulation in peach fruit,the main advances in phenotyping approaches and genetic background,and finally addressing new research priorities and prospective for breeders.
基金supported by the National Natural Science Foundation of China (30871482)the Scientific Research Innovation Project for Graduate Student of Jiangsu Province, China (CXO7B_184Z)
文摘Grain filling, a crucial stage of grain yield formation in rice, is usually affected by the panicle nitrogen (N) fertilization. Field and pot culture experiments were conducted to explore the underlying mechanisms of N effect. Two rice cultivars with high lodging resistance were grown in the field and pot. Four panicle N fertilization treatments were conducted in 2006 and repeated in 2007. The result showed that medium level of panicle N fertilization treatment (NM) enhanced the accumulation and translocation of non-structural carbohydrate (NSC) in the stem and sheath. Compared with non-nitrogen treatment (NO), NM promoted the translocation of labeled ^13C from stem and sheath to grain. But, low level of panicle N fertilization treatment (NL) and high level of panicle N fertilization treatment (NH) showed the negative effect. The endosperm cell, grain length, and grain width of NM increased more quickly than that of NO from 4 to 10 d after anthesis. During the early period of grain filling, sucrose-phosphate synthase (EC 2.4.1.14, SPS) activity were significantly higher for the NM treatment than those of the NL and NH treatments. Sucrose synthase (EC 2.4.1.13, SuSase) activity in the grains was substantially enhanced by NM, with the duration of higher activity being longer than those of the other treatments. At maturing stage, NM significantly increased the filled grain number, the seed-setting rate, and the grain weight compared with NL and NH. The results suggest that NM have a positive effect on the activities of enzymes of physiological importance, thereby increasing the grain size and promoting grain filling.
文摘Drought is a major production constraint for major fruits and vegetable crops in the tropics. This study was conducted to in- vestigate the effect of limited water supply at three growth stages (vegetative, flowering and fruiting) on the accumulation of proline and soluble sugars in three pepper species. Seeds of the three pepper species, Capsicum chinense Jacq., C. annuum L. and C. frutescens L. were raised in a nursery and the seedlings were transplanted into seventy two plastic pots arranged in a randomized complete block design with three replicates, 25 days after planting. Four water treatments, 200 mL of water supplied twice daily (W1), once in every three days (W2), once in every five days (W3), and zero water supplied throughout growing period (W0) were imposed at three vegetative, flowering, and fruiting growth stages. Data were collected on relative water content, free proline and total soluble sugar. Data collected were subjected to analysis of variance and means were separated using Duncan's multiple range test. Results show that the concentration ofproline and soluble sugar in leaves of the three pepper species were found to be remarkable at the different stages of growth in the stressed plants.
基金Supported by Major Agricultural Applied Technology Innovation Project of Shandong Province(2014)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B07)Earmarked Fund for China Agriculture Research System(CARS-28)
文摘In order to provide reference for the selection of appropriate pollination varieties facilitating the improvement of the flavor quality of bagged Fuji apple, the metaxenia effects of 5 pollination varieties on sugars, organic acids and flavor quality of bagged Fuji fruit were studied. The results showed that the 5 pollination varieties had significant metaxenia effects on sugars, organic acids and flavor quality of bagged Fuji fruit. For the sugar components, the fruits pollinated with Golden Delicious and Jinxiuhaitang showed higher glucose contents, and the fruit pollinated with Gala had the highest sucrose content; the fruits pollinated by Gala, Golden Delicious and Ruby exhibited higher malic acids, and the oxalic acid content and the succinic acid content were higher in the fruits pollinated with Jinxiuhaitang and Ruby ; and the fruit pollinated with Gala had the highest total sugar content, and the total acid content was higher in the fruits pollinated by Jinxiuhaitang and Ruby. The sugar-acid ratio was higher in the fruits pollinated with Gala and Golden Delicious, and the lowest in the fruit pollinated with Ruby. The senso- ry evaluation of fruits showed that the fruit pollinated with Ruby tasted sour-sweet, while the fruits pollinated with other 4 pollination varieties were sour and sweet moderately.
基金co-funded by the University of Canterbury,Natural Hazards Platform (NHP)the Ministry of Business,Innovation and Employment (MBIE),New Zealand
文摘This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.
文摘It is practical, economic and sometimes essential to derive rules or conclusions by performing lesser runs of experiments. In this part, a methodology based on 2 f factorial design was brought up to derive guidelines to simulate growth curve and production of sugars by Spirulina (Arthrospira) maxima . The growth curve or accumulation process of sugars was idealized by sets of straight lines limited by phase transfers of growth or accumulation of sugars. Normal analyses of the critical values of the transfers were used to derive their linear relationships with the initial conditions of the experimental factors. These linear functions were called guidelines and were used to simulate the growth curve or accumulation of sugars. Generalization of the guideline technique was determined by the kinetic limitation of nutrient nitrogen or sulfur that was dependent upon their stoichiometric deficiency directly derived from their initial values in the medium. This method uses the initial conditions of culture and does not need measurements of concentrations of nitrate, sulfate and pigments during cultivation. It is a practical and useful alternative way to trace and predict approximately the growth curve and production of sugars by S. maxima .
基金Supported by Agricultural Improved Variety Project of Shandong Province(2016LZGC034)
文摘[Objectives]This study was conducted to provide basic information for the utilization,quality control and deep processing of‘Xintai Tianhong’hawthorn fruit resources.[Methods]The contents of sugar and acid components in‘Xintai Tianhong’hawthorn fruit were determined by high performance liquid chromatography(HPLC).[Results]‘Xintai Tianhong’hawthorn fruit contained such four kinds of sugar components as fructose,sorbitol,glucose and sucrose,and such six kinds of organic acid components as oxalic acid,tartaric acid,malic acid,acetic acid,citric acid and succinic acid.The fruit had the highest sucrose content,accounting for 70.53%of the total sugar content,followed by fructose,glucose and sorbitol.For the organic acid components,the content of succinic acid was the highest,accounting for 47.32%of the total acid content,followed by citric acid,malic acid,oxalic acid and tartaric acid,and acetic acid had the lowest content.[Conclusions]‘Xintai Tianhong’hawthorn should be a succinic acid-type hawthorn variety,which can be used as a parent in genetic research and breeding practice.
文摘Objective:To identify unique immunogenic epitopes of Zika virus non-structural 1(NS1)antigen and produce immunoglobulin Y(IgY)for potential use in he diagnosis of of Zika virus infection.Methods:Immunogenic epitopes were identified using in silico B-cell epitope prediction.A synthetic peptide analog of the predicted epitope was used to induce antipeptide IgY production in hens which was purified using affinity chromatography.Presence of purified IgY and its binding specificity were performed by gel electrophoresis and ELISA,respectively.Results:Out of the nine continuous epitopes identified,the sequence at position 193-208(LKVREDYSLECDPAVI)was selected and used to produce anti-peptide IgY.The produced IgY was found to bind to the synthetic analog of the Zika virus NS1 immunogenic epitope but not to other flaviviruses and random peptides from other pathogens.Conclusions:In this study,we identified an immunogenic epitope unique to Zika virus that can be used to develop a serodiagnostic tool that specifically detect Zika virus infection.
基金the National Natural Science Foundation of China(32001470)the Scientific Research Fund of Hunan Provincial Education Department(21B0184)The Science and Technology Innovation Program of Hunan province(2021RC3088).
文摘Rice yield stability is a breeding goal,particularly for short-growth duration rice,but its underlying mechanisms remain unclear.In an attempt to identify the relationship between yield stability and source–sink characteristics in short-growth duration rice,a field experiment was conducted at three sites(Yueyang,Liuyang,and Hengyang)in 2021 and 2022.This study compared yield,yield components,source–sink characteristics,and their stability between two stable-yielding short-growth duration rice cultivars,Zhongzao 39(Z-39)and Lingliangyou 268(L-268),and two unstable-yielding short-growth duration rice cultivars,Zhongjiazao 17(Z-17)and Zhuliangyou 819(Z-819).The stability of agronomic parameters was represented by the coefficient of variation(CV).The respective CVs of yield in Z-17,Z-819,Z-39,and L-268 were 10.2%,10.1%,4.5%,and 5.7%in 2021 and 19.7%,15.0%,5.4%,and 6.5%in 2022.The respective CVs of grain weight were 6.3%,5.7%,3.4%,and 4.5%in Z-17,Z-819,Z-39,and L-268 in 2021,and 8.1%,6.3%,1.5%,and 0.8%in 2022.The mean source capacity per spikelet and pre-heading non-structural carbohydrate reserves per spikelet(NSC_(pre))were 7%–43%and7%–72%lower in Z-819 and Z-17than in L-268 and Z-39 in 2021 and 2022.The mean quantum yield of photosystem II photochemistry of leaf,leaf area index,and specific leaf weight of L-268 and Z-39 were higher than those of Z-819 and Z-17 at the heading stage.This study suggests that high NSC_(pre),caused by great leaf traits before heading,increases source capacity per spikelet and its stability,thereby increasing the stability of grain weight and yield.Increasing NSC_(pre)is critical for achieving grain weight and yield stability in short-growth duration rice.
文摘BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease.Furthermore,from natural products,active compounds against vital HCV proteins like non-structural protein 3(NS3)protease could be identified to prevent viral proliferation in the host.AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts.METHODS Full-length NS3 without co-factor non-structural protein 4A(NS4A)and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli.The expressed protein was purified by metal ion affinity chromatography and gel filtration.Citrus fruit extracts were screened using fluorescence resonance energy transfer(FRET)assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry(MS)/MS technique.Among different polyphenols,highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay.RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein.Furthermore,in enzyme kinetic studies,NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3.So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease.FRET assay was developed and validated by the half maximal inhibitory concentration(IC50)values of commercially available inhibitors.Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91%of protease activity.Among the compounds identified by LCMS analysis,hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of-10.98.CONCLUSION Fused NS4A-NS3 protease is functionally more active,which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32μmol/L.
文摘In order to do a best stipulation on her consumption, it is necessary to know if a food provoke faintly, fairly or highly the glyceamia. The aim of this work was to evaluate the glycemic index of coconut water sugar from three coconuts varieties. So, with a cohort of 15 people, a capillary blood was collect after sugar ingestion and the glycaemia read directly on a glucometer. The result showed that the brown and white sugar from coconut sugar can be classified as low glycemic index food. Also, the glycemic indexes of white coconut water sugar are 2 to 3 more lower than that the brown sugar. The glycemic indexes of sugars vary according to the variety of coconut used. The sugars of the coconut palm (MYD) are more hyper-glycemic than those of the hybrid (PB121+) which is more hyperglycemic than the sugars of the coconut palm (WAT). Thus, with a controlled consumption, the coconut water sugars could be the sugars that are best for the health of the healthy and diabetic populations because it raises slightly the postprandial glucose.
文摘Sugar beet leaves are the major crop waste from sugar beet production, while the unused leaves contain a high number of sugars and polysaccharides. The effects of different enzyme products (cellulase, Cellic CTec2;xylanase, Cellic HTec2;and pectinase, Pectinex Ultra SPL) were determined during high-solids enzymatic hydrolysis of sugar beet leaves at 10% total solids (TS) content. Response surface methodology was used to study the effects of enzyme loadings during the hydrolysis of sugar beet leaves for producing fermentable sugars. It was found that both cellulases and pectinases are important enzymes for the hydrolysis of sugar beet leaves. Enzyme loading and reaction time were important factors. Based on the amount of sugars released, a maximum sugar conversion of 82% was achieved after 72 h of hydrolysis using 30 filter paper unit (FPU) g-1 glucan for cellulase and 150 polygalacturonase unit (PGU) g-1 polygalacturonic acid for pectinase, or 37 FPU g-1 glucan for cellulase and 100 PGU g-1 polygalacturonic acid for pectinase. The corresponding sugar yield and sugar concentration were 0.35 g·g-1 TS, and 35 g·l-1, respectively. Sugar conversion ranged from 59% - 70%, 68% - 80%, and 74% - 82% after 24 h, 48 h, and 72 h of hydrolysis depending on the design conditions.
文摘The fragmentation patterns of anhydro sugars 1—6 in electron impact mass spectrometry have been proposed, and verified by means of metastable ions scanning method.
文摘In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes, which participate in fertilization to produce the zygote, the first cell of the sporophyte generation. In addition to this sexual reproduction pathway, some fern species can undergo apospory or apogamy, processes that bypass meiosis or fertilization, respectively, to alternate between the two generations without changing the chromosome number. Apospory is inducible in the laboratory in various fern species simply by altering the sugar level in the media. In sporophytes induced to undergo apospory, sporophyte regeneration is also observed. The ratio of aposporous gametophytes to regenerated sporophytes varies, in a manner consistent with being dependent on sugar level. Whereas the sugar signaling pathway is yet to be elucidated in lower plants, in angiosperms it has been shown to play a regulatory role in controlling essential processes including flowering and embryo development, which give rise to the gametophyte and the next sporophyte generation, respectively. Here, we present evidence for the role of different sugar levels on the balance of apospory and regeneration in the fern Ceratopteris richardii. The demonstration of crosstalk between sugar signaling and the hormone ethylene signaling in angiosperms prompted us to test the effects of this hormone in combination with sugar on apospory vs. regeneration. These results provide insight into how a group of redifferentiating cells determines which generation to become and lay the groundwork for further analysis of this asexual pathway.