A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to per...A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments.The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated,and the influences of fracture inclination,fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed.The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern,resulting in the bridging buildup during proppant transport to form unfilled zone,the emergence of multiple complex flow patterns such as channeling,reverse flow and bypassing of sand-carrying fluid,and the influence on the stability of the sand dune.The proppant has a higher placement rate in inclined rough fractures,with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures,but exhibits poor stability of the sand dune.Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure.Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures.展开更多
With the characteristic size reducing as well as the power densities exponentially increasing, elevated chip temperatures are true limiters to the performance and reliability of integrated circuits. To address these t...With the characteristic size reducing as well as the power densities exponentially increasing, elevated chip temperatures are true limiters to the performance and reliability of integrated circuits. To address these thermal issues, it is essential to use a set of on-chip thermal sensors to monitor temperatures during operation.These temperature sampling results are then used by thermal management techniques to appropriately manage chip performance. In this paper, we propose a surface spline interpolation method to reconstruct the full thermal characterization of integrated circuits with non-uniform thermal sensor placements. We construct the thermal surface function using the mathematical tool of surface spline with the matrix calculation of the non-uniform sample data. Then, we take the coordinates of the points at grid locations into the surface function to get its temperature value so that we can reconstruct the full thermal signals. To evaluate the effiectiveness of our method,we develop an experiment for reconstructing full thermal status of a 16-core processor. Experimental results show that our method outperforms the inverse distance weighting method based on dynamic Voronoi diagram and spectral analysis techniques both in the average absolute error metric and the hot spot absolute error metric with short enough runtime to meet the real-time process demand. Besides, our method still has the advantages such as its mathematical simplicity with no need of pre-process.展开更多
This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the Chi...This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How...Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent comm...The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent communication occurs between network switches and the controller,which manages and directs traffic flows.If the controller is not strategically placed within the network,this communication can experience increased delays,negatively affecting network performance.Specifically,an improperly placed controller can lead to higher end-to-end(E2E)delay,as switches must traverse more hops or encounter greater propagation delays when communicating with the controller.This paper introduces a novel approach using Deep Q-Learning(DQL)to dynamically place controllers in Software-Defined Internet of Things(SD-IoT)environments,with the goal of minimizing E2E delay between switches and controllers.E2E delay,a crucial metric for network performance,is influenced by two key factors:hop count,which measures the number of network nodes data must traverse,and propagation delay,which accounts for the physical distance between nodes.Our approach models the controller placement problem as a Markov Decision Process(MDP).In this model,the network configuration at any given time is represented as a“state,”while“actions”correspond to potential decisions regarding the placement of controllers or the reassignment of switches to controllers.Using a Deep Q-Network(DQN)to approximate the Q-function,the system learns the optimal controller placement by maximizing the cumulative reward,which is defined as the negative of the E2E delay.Essentially,the lower the delay,the higher the reward the system receives,enabling it to continuously improve its controller placement strategy.The experimental results show that our DQL-based method significantly reduces E2E delay when compared to traditional benchmark placement strategies.By dynamically learning from the network’s real-time conditions,the proposed method ensures that controller placement remains efficient and responsive,reducing communication delays and enhancing overall network performance.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content deliver...Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.展开更多
Automated fiber placement(AFP)enables the efficient and precise fabrication of complex-shaped aerospace composite structures with lightweight and high-performance properties.However,due to the excessive compression on...Automated fiber placement(AFP)enables the efficient and precise fabrication of complex-shaped aerospace composite structures with lightweight and high-performance properties.However,due to the excessive compression on the inner edge of the tow placed along the curved trajectory,the resulting defects represented by buckling and wrinkles in spatial tow steering can induce poor manufacturing accuracy and quality degradation of products.In this paper,a theoretical model of tow buckling based on the first-order shear deformation laminate theory,linear elastic adhesion interface and Hertz compaction contact theory is proposed to analyze the formation mechanism of the wrinkles and predict the formation of defects by solving the critical radius of the trajectory,and finite element analysis involving the cohesive zone modeling(CZM)is innovated to simulate the local buckling state of the steered tow in AFP.Additionally,numerical parametric studies and experimental results indicate that mechanical properties and geometric parameters of the prepreg,the curvature of the placement trajectory and critical process parameters have a significant impact on buckling formation,and optimization of process parameters can achieve effective suppression of placement defects.This research proposes a theoretical modeling method for tow buckling,and conducts in-depth research on defect formation and suppression methods based on finite element simulation and placement experiments.展开更多
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de...Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible ...Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible UAVs,massive sensing data is gathered and processed promptly without considering geographical locations.Deep neural networks(DNNs)are becoming a driving force to extract valuable information from sensing data.However,the lightweight servers installed on UAVs are not able to meet the extremely high requirements of inference tasks due to the limited battery capacities of UAVs.In this work,we investigate a DNN model placement problem for AIoT applications,where the trained DNN models are selected and placed on UAVs to execute inference tasks locally.It is impractical to obtain future DNN model request profiles and system operation states in UAV-enabled edge computing.The Lyapunov optimization technique is leveraged for the proposed DNN model placement problem.Based on the observed system overview,an advanced online placement(AOP)algorithm is developed to solve the transformed problem in each time slot,which can reduce DNN model transmission delay and disk I/O energy cost simultaneously while keeping the input data queues stable.Finally,extensive simulations are provided to depict the effectiveness of the AOP algorithm.The numerical results demonstrate that the AOP algorithm can reduce 18.14%of the model placement cost and 29.89%of the input data queue backlog on average by comparing it with benchmark algorithms.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and...As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.展开更多
Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these ...Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.展开更多
BACKGROUND Ventricular diverticula are a rare congenital cardiac disorder presenting with an extremely low incidence.The presence of an apical diverticulum of the right ventricle has been associated with other congeni...BACKGROUND Ventricular diverticula are a rare congenital cardiac disorder presenting with an extremely low incidence.The presence of an apical diverticulum of the right ventricle has been associated with other congenital heart diseases such as tetralogy of Fallot.An important defining characteristic of ventricular diverticula that separates them from aneurysms through imaging techniques,is that they possess myocardial contraction synchronous to the adjacent walls,contributing to the ventricular stroke volume,so they do not usually require surgical treatment.CASE SUMMARY A 15-year-old male,currently asymptomatic,in follow up due to a pulmonary valve prosthesis placement and a history of corrected tetralogy of Fallot at 18 months old,underwent a cardiac magnetic resonance imaging in February 2024.A diverticulum was detected in the apical inferolateral wall of the right ventricle,which was not documented in the cardiac magnetic resonance imaging prior to valve prosthesis placement.CONCLUSION Right ventricular diverticula are a rare entity.To this date we could not find another case of a pulmonary valve placement,followed by a right ventricular diverticulum appearance.展开更多
Objective:To evaluate and analyze the application effect of tracheal stent placement in nutritional support therapy for tracheoesophageal fistula.Methods:Clinical data of 32 patients who underwent nutritional support ...Objective:To evaluate and analyze the application effect of tracheal stent placement in nutritional support therapy for tracheoesophageal fistula.Methods:Clinical data of 32 patients who underwent nutritional support therapy for tracheoesophageal fistula in our hospital from September 2021 to September 2022 were collected,and all patients underwent tracheal silicone stenting,comparing dyspnea classification and Karnofsky score before and after stenting,and conducting post-treatment follow-up.Results:In 32 patients with tracheoesophageal fistula,dyspnea grading improved from grades III and IV to grades 0 to II.Before treatment,10 patients(31.06%)were in grade IV,17 patients(53.12%)were in grade III,and five patients(15.62)were in grade II;after treatment,13 patients(40.63%)were in grade I,12 patients(37.50%)were in grade I,and seven patients(21.87%)were in grade 0(P<0.05);Karnofsky score(37.52±4.86 before treatment)improved significantly to 71.39±8.24 one week after treatment(P<0.05).Nine patients with tracheoesophageal fistula were placed with silicone Y14-10-10 stent,11 with silicone 18-14-14 stent,three with silicone Y15-12-12,and seven with silicone stent 16-13-13.Conclusion:Silicone tracheobronchial stent placement for the treatment of tracheoesophageal fistula is technically feasible,simple,and safe,with reliable near-term efficacy,and is worthy of popularization and application.展开更多
Objective:To observe the efficacy of oral-facial acupressure combined with oral placement therapy(OPT)in improving articulation clarity in 120 children with spastic cerebral palsy,and to explore effective therapeutic ...Objective:To observe the efficacy of oral-facial acupressure combined with oral placement therapy(OPT)in improving articulation clarity in 120 children with spastic cerebral palsy,and to explore effective therapeutic solutions for speech disorders associated with spastic cerebral palsy.Methods:A total of 120 children with spastic cerebral palsy and speech disorders,meeting the inclusion criteria,were randomly assigned into two groups:60 cases in the treatment group and 60 cases in the control group.The treatment group received orofacial acupressure combined with OPT,while the control group received only OPT.The Oral Motor Function Assessment Scale(OMFAS),developed by the China Rehabilitation Research Centre(CRRC),was used to evaluate the treatment outcomes before and after the intervention.Results:After the treatment,both the treatment and control groups showed improved mobility of the mandible,lips,and tongue.However,the treatment group exhibited significantly better improvement than the control group,with the difference between the two groups being statistically significant(P<0.05).Conclusion:Oral-facial acupressure combined with OPT can effectively improve articulation clarity in children with spastic cerebral palsy.This combined therapy is recommended for clinical promotion and application.展开更多
基金Supported by National Key Research and Development Program of China(2022YFE0137200)Outstanding Youth Natural Science Fund of Shaanxi Province(2022JC-37)+2 种基金Innovation Capability Support Program of Shaanxi(2023-CX-TD-31)Natural Science Basic Research Project of Shaanxi Province(2024JC-YBQN-0381)National Natural Science Foundation of China(51874240,52204021)。
文摘A three-dimensional reconstruction of rough fracture surfaces of hydraulically fractured rock outcrops is carried out by casting process,a large-scale experimental setup for visualizing rough fractures is built to perform proppant transport experiments.The typical characteristics of proppant transport and placement in rough fractures and its intrinsic mechanisms are investigated,and the influences of fracture inclination,fracture width and fracturing fluid viscosity on proppant transport and placement in rough fractures are analyzed.The results show that the rough fractures cause variations in the shape of the flow channel and the fluid flow pattern,resulting in the bridging buildup during proppant transport to form unfilled zone,the emergence of multiple complex flow patterns such as channeling,reverse flow and bypassing of sand-carrying fluid,and the influence on the stability of the sand dune.The proppant has a higher placement rate in inclined rough fractures,with a maximum increase of 22.16 percentage points in the experiments compared to vertical fractures,but exhibits poor stability of the sand dune.Reduced fracture width aggravates the bridging of proppant and induces higher pumping pressure.Increasing the viscosity of the fracturing fluid can weaken the proppant bridging phenomenon caused by the rough fractures.
基金the National Basic Research Program(973)of China(No.2009CB320206)the National Natural Science Foundation of China(No.60821062)
文摘With the characteristic size reducing as well as the power densities exponentially increasing, elevated chip temperatures are true limiters to the performance and reliability of integrated circuits. To address these thermal issues, it is essential to use a set of on-chip thermal sensors to monitor temperatures during operation.These temperature sampling results are then used by thermal management techniques to appropriately manage chip performance. In this paper, we propose a surface spline interpolation method to reconstruct the full thermal characterization of integrated circuits with non-uniform thermal sensor placements. We construct the thermal surface function using the mathematical tool of surface spline with the matrix calculation of the non-uniform sample data. Then, we take the coordinates of the points at grid locations into the surface function to get its temperature value so that we can reconstruct the full thermal signals. To evaluate the effiectiveness of our method,we develop an experiment for reconstructing full thermal status of a 16-core processor. Experimental results show that our method outperforms the inverse distance weighting method based on dynamic Voronoi diagram and spectral analysis techniques both in the average absolute error metric and the hot spot absolute error metric with short enough runtime to meet the real-time process demand. Besides, our method still has the advantages such as its mathematical simplicity with no need of pre-process.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210441)the National Natural Science Foundation of China(Nos.U2167208,11875223)。
文摘This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金supported by the Researcher Supporting Project number(RSPD2024R582),King Saud University,Riyadh,Saudi Arabia.
文摘The controller is a main component in the Software-Defined Networking(SDN)framework,which plays a significant role in enabling programmability and orchestration for 5G and next-generation networks.In SDN,frequent communication occurs between network switches and the controller,which manages and directs traffic flows.If the controller is not strategically placed within the network,this communication can experience increased delays,negatively affecting network performance.Specifically,an improperly placed controller can lead to higher end-to-end(E2E)delay,as switches must traverse more hops or encounter greater propagation delays when communicating with the controller.This paper introduces a novel approach using Deep Q-Learning(DQL)to dynamically place controllers in Software-Defined Internet of Things(SD-IoT)environments,with the goal of minimizing E2E delay between switches and controllers.E2E delay,a crucial metric for network performance,is influenced by two key factors:hop count,which measures the number of network nodes data must traverse,and propagation delay,which accounts for the physical distance between nodes.Our approach models the controller placement problem as a Markov Decision Process(MDP).In this model,the network configuration at any given time is represented as a“state,”while“actions”correspond to potential decisions regarding the placement of controllers or the reassignment of switches to controllers.Using a Deep Q-Network(DQN)to approximate the Q-function,the system learns the optimal controller placement by maximizing the cumulative reward,which is defined as the negative of the E2E delay.Essentially,the lower the delay,the higher the reward the system receives,enabling it to continuously improve its controller placement strategy.The experimental results show that our DQL-based method significantly reduces E2E delay when compared to traditional benchmark placement strategies.By dynamically learning from the network’s real-time conditions,the proposed method ensures that controller placement remains efficient and responsive,reducing communication delays and enhancing overall network performance.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,61831008)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297,2021A1515011572)Shenzhen Science and Technology Program ZDSYS20210623091808025,Stable Support Plan Program GXWD20231129102638002.
文摘Cooperative utilization of multidimensional resources including cache, power and spectrum in satellite-terrestrial integrated networks(STINs) can provide a feasible approach for massive streaming media content delivery over the seamless global coverage area. However, the on-board supportable resources of a single satellite are extremely limited and lack of interaction with others. In this paper, we design a network model with two-layered cache deployment, i.e., satellite layer and ground base station layer, and two types of sharing links, i.e., terrestrial-satellite sharing(TSS) links and inter-satellite sharing(ISS) links, to enhance the capability of cooperative delivery over STINs. Thus, we use rateless codes for the content divided-packet transmission, and derive the total energy efficiency(EE) in the whole transmission procedure, which is defined as the ratio of traffic offloading and energy consumption. We formulate two optimization problems about maximizing EE in different sharing scenarios(only TSS and TSS-ISS),and propose two optimized algorithms to obtain the optimal content placement matrixes, respectively.Simulation results demonstrate that, enabling sharing links with optimized cache placement have more than 2 times improvement of EE performance than other traditional placement schemes. Particularly, TSS-ISS schemes have the higher EE performance than only TSS schemes under the conditions of enough number of satellites and smaller inter-satellite distances.
基金Supported by National Natural Science Foundation of China(Grant Nos.52205003 and 51575018)Zhejiang Provincial Natural Science Foundation(Grant No.LD22E050011)Ningbo Municipal Key Projects of Science and Technology Innovation 2025 Plan(Grant No.2022Z070).
文摘Automated fiber placement(AFP)enables the efficient and precise fabrication of complex-shaped aerospace composite structures with lightweight and high-performance properties.However,due to the excessive compression on the inner edge of the tow placed along the curved trajectory,the resulting defects represented by buckling and wrinkles in spatial tow steering can induce poor manufacturing accuracy and quality degradation of products.In this paper,a theoretical model of tow buckling based on the first-order shear deformation laminate theory,linear elastic adhesion interface and Hertz compaction contact theory is proposed to analyze the formation mechanism of the wrinkles and predict the formation of defects by solving the critical radius of the trajectory,and finite element analysis involving the cohesive zone modeling(CZM)is innovated to simulate the local buckling state of the steered tow in AFP.Additionally,numerical parametric studies and experimental results indicate that mechanical properties and geometric parameters of the prepreg,the curvature of the placement trajectory and critical process parameters have a significant impact on buckling formation,and optimization of process parameters can achieve effective suppression of placement defects.This research proposes a theoretical modeling method for tow buckling,and conducts in-depth research on defect formation and suppression methods based on finite element simulation and placement experiments.
文摘Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the National Science Foundation of China(Grant No.62202118)the Top-Technology Talent Project from Guizhou Education Department(Qianjiao Ji[2022]073)+1 种基金the Natural Science Foundation of Hebei Province(Grant No.F2022203045 and F2022203026)the Central Government Guided Local Science and Technology Development Fund Project(Grant No.226Z0701G).
文摘Unmanned aerial vehicle(UAV)-enabled edge computing is emerging as a potential enabler for Artificial Intelligence of Things(AIoT)in the forthcoming sixth-generation(6G)communication networks.With the use of flexible UAVs,massive sensing data is gathered and processed promptly without considering geographical locations.Deep neural networks(DNNs)are becoming a driving force to extract valuable information from sensing data.However,the lightweight servers installed on UAVs are not able to meet the extremely high requirements of inference tasks due to the limited battery capacities of UAVs.In this work,we investigate a DNN model placement problem for AIoT applications,where the trained DNN models are selected and placed on UAVs to execute inference tasks locally.It is impractical to obtain future DNN model request profiles and system operation states in UAV-enabled edge computing.The Lyapunov optimization technique is leveraged for the proposed DNN model placement problem.Based on the observed system overview,an advanced online placement(AOP)algorithm is developed to solve the transformed problem in each time slot,which can reduce DNN model transmission delay and disk I/O energy cost simultaneously while keeping the input data queues stable.Finally,extensive simulations are provided to depict the effectiveness of the AOP algorithm.The numerical results demonstrate that the AOP algorithm can reduce 18.14%of the model placement cost and 29.89%of the input data queue backlog on average by comparing it with benchmark algorithms.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by the National Natural Science Foundation of China under Grant 62272391in part by the Key Industry Innovation Chain of Shaanxi under Grant 2021ZDLGY05-08.
文摘As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.
基金funded by Researchers Supporting Project Number(RSPD2025R 947),King Saud University,Riyadh,Saudi Arabia.
文摘Cloud computing has emerged as a vital platform for processing resource-intensive workloads in smart manu-facturing environments,enabling scalable and flexible access to remote data centers over the internet.In these environments,Virtual Machines(VMs)are employed to manage workloads,with their optimal placement on Physical Machines(PMs)being crucial for maximizing resource utilization.However,achieving high resource utilization in cloud data centers remains a challenge due to multiple conflicting objectives,particularly in scenarios involving inter-VM communication dependencies,which are common in smart manufacturing applications.This manuscript presents an AI-driven approach utilizing a modified Multi-Objective Particle Swarm Optimization(MOPSO)algorithm,enhanced with improved mutation and crossover operators,to efficiently place VMs.This approach aims to minimize the impact on networking devices during inter-VM communication while enhancing resource utilization.The proposed algorithm is benchmarked against other multi-objective algorithms,such as Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),demonstrating its superiority in optimizing resource allocation in cloud-based environments for smart manufacturing.
文摘BACKGROUND Ventricular diverticula are a rare congenital cardiac disorder presenting with an extremely low incidence.The presence of an apical diverticulum of the right ventricle has been associated with other congenital heart diseases such as tetralogy of Fallot.An important defining characteristic of ventricular diverticula that separates them from aneurysms through imaging techniques,is that they possess myocardial contraction synchronous to the adjacent walls,contributing to the ventricular stroke volume,so they do not usually require surgical treatment.CASE SUMMARY A 15-year-old male,currently asymptomatic,in follow up due to a pulmonary valve prosthesis placement and a history of corrected tetralogy of Fallot at 18 months old,underwent a cardiac magnetic resonance imaging in February 2024.A diverticulum was detected in the apical inferolateral wall of the right ventricle,which was not documented in the cardiac magnetic resonance imaging prior to valve prosthesis placement.CONCLUSION Right ventricular diverticula are a rare entity.To this date we could not find another case of a pulmonary valve placement,followed by a right ventricular diverticulum appearance.
文摘Objective:To evaluate and analyze the application effect of tracheal stent placement in nutritional support therapy for tracheoesophageal fistula.Methods:Clinical data of 32 patients who underwent nutritional support therapy for tracheoesophageal fistula in our hospital from September 2021 to September 2022 were collected,and all patients underwent tracheal silicone stenting,comparing dyspnea classification and Karnofsky score before and after stenting,and conducting post-treatment follow-up.Results:In 32 patients with tracheoesophageal fistula,dyspnea grading improved from grades III and IV to grades 0 to II.Before treatment,10 patients(31.06%)were in grade IV,17 patients(53.12%)were in grade III,and five patients(15.62)were in grade II;after treatment,13 patients(40.63%)were in grade I,12 patients(37.50%)were in grade I,and seven patients(21.87%)were in grade 0(P<0.05);Karnofsky score(37.52±4.86 before treatment)improved significantly to 71.39±8.24 one week after treatment(P<0.05).Nine patients with tracheoesophageal fistula were placed with silicone Y14-10-10 stent,11 with silicone 18-14-14 stent,three with silicone Y15-12-12,and seven with silicone stent 16-13-13.Conclusion:Silicone tracheobronchial stent placement for the treatment of tracheoesophageal fistula is technically feasible,simple,and safe,with reliable near-term efficacy,and is worthy of popularization and application.
文摘Objective:To observe the efficacy of oral-facial acupressure combined with oral placement therapy(OPT)in improving articulation clarity in 120 children with spastic cerebral palsy,and to explore effective therapeutic solutions for speech disorders associated with spastic cerebral palsy.Methods:A total of 120 children with spastic cerebral palsy and speech disorders,meeting the inclusion criteria,were randomly assigned into two groups:60 cases in the treatment group and 60 cases in the control group.The treatment group received orofacial acupressure combined with OPT,while the control group received only OPT.The Oral Motor Function Assessment Scale(OMFAS),developed by the China Rehabilitation Research Centre(CRRC),was used to evaluate the treatment outcomes before and after the intervention.Results:After the treatment,both the treatment and control groups showed improved mobility of the mandible,lips,and tongue.However,the treatment group exhibited significantly better improvement than the control group,with the difference between the two groups being statistically significant(P<0.05).Conclusion:Oral-facial acupressure combined with OPT can effectively improve articulation clarity in children with spastic cerebral palsy.This combined therapy is recommended for clinical promotion and application.