This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthor...This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.展开更多
A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, ...A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara ci...This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig...Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.展开更多
If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-...If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far o...Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.展开更多
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicator...When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechani...This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.展开更多
基金supported by the National Natural Science Foundation of China (Grant 11672160)the National Key Research and Development Program of China (Grant 2016YF A0401200)
文摘This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
文摘A new scale transformation method is used in solving the Schrodinger equation. With it, the uniform grids in the discretization in conventional metho d are changed into non-uniform grids. Consequently, in some cases, the computing quantity will be greatly reduced at keeping the required accuracy. The calcul ation of the quantized inversion layer in MOS structure is used to demonstrate t he efficiency of the new method.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
文摘This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.
基金jointly supported by the National Natural Science Foundation of China (Grant No.42075153)the Young Scientists Fund of the Earth System Modeling and Prediction Centre (Grant No. CEMC-QNJJ-2022014)。
文摘If an explicit time scheme is used in a numerical model, the size of the integration time step is typically limited by the spatial resolution. This study develops a regular latitude–longitude grid-based global three-dimensional tracer transport model that is computationally stable at large time-step sizes. The tracer model employs a finite-volume flux-form semiLagrangian transport scheme in the horizontal and an adaptively implicit algorithm in the vertical. The horizontal and vertical solvers are coupled via a straightforward operator-splitting technique. Both the finite-volume scheme's onedimensional slope-limiter and the adaptively implicit vertical solver's first-order upwind scheme enforce monotonicity. The tracer model permits a large time-step size and is inherently conservative and monotonic. Idealized advection test cases demonstrate that the three-dimensional transport model performs very well in terms of accuracy, stability, and efficiency. It is possible to use this robust transport model in a global atmospheric dynamical core.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
基金co-supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030007)the National Key Research and Development Program of China (Grant Nos. 2017YFA0604302 and 2017YFA0604804)+1 种基金the National Natural Science Foundation of China (Grant No. 41875137)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)。
文摘Global gridded crop models(GGCMs) have been broadly applied to assess the impacts of climate and environmental change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies have assessed the performance of GGCMs in China, and these studies mainly focused on the average and interannual variability of national and regional yields. Here, a systematic national-and provincial-scale evaluation of the simulations by13 GGCMs [12 from the GGCM Intercomparison(GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of wheat, maize, and rice well. Most GGCMs struggle to simulate the spatial patterns of crop yields. In terms of temporal variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the top-10 producing provinces in China, albeit with a few exceptions. This study, for the first time, provides a complete picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and uncertainty of national-and provincial-scale crop yield prediction in China.
基金Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research。
文摘The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金the Incubation Project of State Grid Jiangsu Corporation of China“Construction and Application of Intelligent Load Transferring Platform for Active Distribution Networks”(JF2023031).
文摘When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changingthe states of tie-switches and load demands. Computation speed is one of the major performance indicators inpower grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault powergrids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.The tedious training process of the reinforcement learning model can be conducted offline, so the model showssatisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Consideringthat the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correctionframework is proposed to modify the learning model. In the framework, the action of load shedding is correctedaccording to sensitivity analysis results under a small discrete increment so as to match the constraints of line flowlimits. The results of case studies indicate that the proposed method is practical for fast and safe power grid loadtransfer.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金supported in part by National Natural Science Foundation of China under Grant 61973073supported by Jiangsu Province Higher Education Basic Science (Natural Science) Research Project under Grant 23KJB470022
文摘This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.