An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform il...An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
The deep_sea floor images are acquired under non_uniform illumination,the effects of which bring up many difficulties for image segmentation.The paper compares three methods of removing non_uniform illumination effect...The deep_sea floor images are acquired under non_uniform illumination,the effects of which bring up many difficulties for image segmentation.The paper compares three methods of removing non_uniform illumination effects.The effectiveness and robustness are evaluated on three test images with high_,moderate_ and low_density grains,respectively.The results show that local filtering algorithm does not remove the non_uniform illumination effects completely.The image subtracting algorithm will lose some of the dynamic range of the original data.The enhanced image stretching algorithm is the most effective one.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are s...Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.展开更多
The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized li...The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.展开更多
It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer v...It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer vision. The Retinex algorithm is one of the most popular methods in the field and uniform illumination is necessary to enhance low illumination image quality by using this algorithm. However, for the different areas of an image with contrast brightness differences, the illumination image is not smooth and causes halo artifacts so that it cannot retain the detail information of the original images. To solve the problem, we generalize the multi-scale Retinex algorithm and propose a new enhancement method for the low illumination images based on the microarray camera. The proposed method can well make up for the deficiency of imbalanced illumination and significantly inhibit the halo artifacts as well. Experimental results show that the proposed method can get better image enhancement effect compared to the multi-scale Retinex algorithm of a single image enhancement. Advantages of the method also include that it can significantly inhibit the halo artifacts and thus retain the details of the original images, it can improve the brightness and contrast of the image as well. The newly developed method in this paper has application potential to the images captured by pad and cell phone in the low illumination environment.展开更多
The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumin...The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumination analysis and put forward a method of seismic survey geometry design for target-oriented imaging. The method needs a velocity model obtained by a preliminary seismic interpretation. The one-way Fourier finite-difference wave propagator is used to extrapolate plane wave sources on the target layer to the surface. By analyzing the wave energy distribution at the surface extrapolated from the target layer, the shot or receiver locations needed for target layer imaging can be determined. Numerical tests using the SEG-EAGE salt model suggest that this method is useful for confirming the special seismic acquisition geometry layout for target-oriented imaging.展开更多
Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually app...Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.展开更多
Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to fac...Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.展开更多
The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra ...The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra into detectable region of microscope.After parameters estimation of the structured pattern,the encoded spectra are computationally decoded and recombined in Fourier domain to equivalently increase the cut-off frequency of microscope,resulting in the extension of detectable spectra and a reconstructed image with about two-fold enhanced resolution.Three di®erent methods to estimate the initial phase of structured pattern are compared,verifying the auto-correlation algorithm a®ords the fast,most precise and robust measurement.The artifacts sources and detailed reconstruction°owchart for both linear and nonlinear SIM are also presented.展开更多
A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-il...A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.展开更多
A method using spectrum illumination to reconstruct 3-D object image is a new concept in the field of computer vision. The design of optical illumination system is crucial in this method. Several ways to achieve multi...A method using spectrum illumination to reconstruct 3-D object image is a new concept in the field of computer vision. The design of optical illumination system is crucial in this method. Several ways to achieve multi-color spectrum illumination are discussed. A prism illumination system is designed by means of aligning symmetrically the prism at the mid-wavelength (n d=1.806 274) of light path and using reflection collimating lens, cylindrical expending lens and two optical shutters. The relations between deviation angles and light wavelengths are given, and some 3-D reconstruction results are presented.展开更多
Imaging objects hidden behind turbid media is of great scientific importance and practical value, which has been drawing a lot of attention recently. However, most of the scattering imaging methods rely on a narrow li...Imaging objects hidden behind turbid media is of great scientific importance and practical value, which has been drawing a lot of attention recently. However, most of the scattering imaging methods rely on a narrow linewidth of light, limiting their application. A mixture of the scattering light from various spectra blurs the detected speckle pattern, bringing difficulty in phase retrieval. Image reconstruction becomes much worse for dynamic objects due to short exposure times. We here investigate non-invasively recovering images of dynamic objects under white-light irradiation with the multi-frame OTF retrieval engine (MORE). By exploiting redundant information from multiple measurements, MORE recovers the phases of the optical-transfer-function (OTF) instead of recovering a single image of an object. Furthermore, we introduce the number of non-zero pixels (NNP) into MORE, which brings improvement on recovered images. An experimental proof is performed for dynamic objects at a frame rate of 20 Hz under white-light irradiation of more than 300 nm bandwidth.展开更多
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems...In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.展开更多
The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adapti...The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adaptive geometry. Plane wave shot migration is another method to perform exact wave equation prestack imaging with high computational efficiency and without the migration aperture problem. Moreover, wavefield energy can be compensated at the target zone by controlled illumination. In this paper, plane wave shot PSDM was implemented by the control of the plane down-going wavefield and selection of number and range of the raypaths in order to optimize the imaging effect. In addition, controlled illumination techniques are applied to enhance the imaging precision of interesting areas at different depths. Numerical calculation indicates that plane wave shot imaging is a rapid and efficient method with less computational cost and easy parallel computation compared to the single-square-root operator imaging for common shot gathers and double- square-root operator imaging for common midpoint gathers.展开更多
Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution e...Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution enhancement can only increase the spatial resolution of micros-copy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function.The frequency of the pattern generated by the nonlinear response in samples is not limited;therefore,nonlinear SIM(NL-SIM),in theory,has no inherent limit to the resolution.In the present study,we describe a two-photon nonlinear SIM(2P-SIM)technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern,which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process.The theoretical models of super-resolution imaging were established through our simulation,which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the reso-lution.The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible.展开更多
Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging ca...Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging capabilities.Furthermore,faster three-dimensional imaging methods are required to help enable more research-oriented living cell imaging.In this paper,a fast and sensitive three-dimensional structured illumination microscopy based on asymmetric three-beam interference is proposed.An innovative time-series acquisition method is employed to halve the time required to obtain each raw image.A segmented half-wave plate as a substantial linear polarization modulation method is applied to the three-dimensional SIM system for the first time.Although it needs to acquire 21 raw images instead of 15 to reconstruct one super-resolution image,the SIM setup proposed in this paper is 30%faster than the traditional spatial light modulator-SIM(SLM-SIM)in imaging each super-resolution image.The related theoretical derivation,hardware system,and verification experiment are elaborated in this paper.The stable and fast 3D super-resolution imaging method proposed in this paper is of great significance to the research of organelle interaction,intercellular communication,and other biomedical fields.展开更多
基金This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(R.G.P 2/157/43).
文摘An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
文摘The deep_sea floor images are acquired under non_uniform illumination,the effects of which bring up many difficulties for image segmentation.The paper compares three methods of removing non_uniform illumination effects.The effectiveness and robustness are evaluated on three test images with high_,moderate_ and low_density grains,respectively.The results show that local filtering algorithm does not remove the non_uniform illumination effects completely.The image subtracting algorithm will lose some of the dynamic range of the original data.The enhanced image stretching algorithm is the most effective one.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.
文摘Finger vein extraction and recognition hold significance in various applications due to the unique and reliable nature of finger vein patterns. While recently finger vein recognition has gained popularity, there are still challenges associated with extracting and processing finger vein patterns related to image quality, positioning and alignment, skin conditions, security concerns and processing techniques applied. In this paper, a method for robust segmentation of line patterns in strongly blurred images is presented and evaluated in vessel network extraction from infrared images of human fingers. In a four-step process: local normalization of brightness, image enhancement, segmentation and cleaning were involved. A novel image enhancement method was used to re-establish the line patterns from the brightness sum of the independent close-form solutions of the adopted optimization criterion derived in small windows. In the proposed method, the computational resources were reduced significantly compared to the solution derived when the whole image was processed. In the enhanced image, where the concave structures have been sufficiently emphasized, accurate detection of line patterns was obtained by local entropy thresholding. Typical segmentation errors appearing in the binary image were removed using morphological dilation with a line structuring element and morphological filtering with a majority filter to eliminate isolated blobs. The proposed method performs accurate detection of the vessel network in human finger infrared images, as the experimental results show, applied both in real and artificial images and can readily be applied in many image enhancement and segmentation applications.
基金supported by the Fundamental Re-search Funds for the Central Universities(HYGJXM202309).
文摘The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications.
基金Supported by National Science and Technology Major Project(2014ZX02502003The National Natural Science Foundation of China(61170327)
文摘It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer vision. The Retinex algorithm is one of the most popular methods in the field and uniform illumination is necessary to enhance low illumination image quality by using this algorithm. However, for the different areas of an image with contrast brightness differences, the illumination image is not smooth and causes halo artifacts so that it cannot retain the detail information of the original images. To solve the problem, we generalize the multi-scale Retinex algorithm and propose a new enhancement method for the low illumination images based on the microarray camera. The proposed method can well make up for the deficiency of imbalanced illumination and significantly inhibit the halo artifacts as well. Experimental results show that the proposed method can get better image enhancement effect compared to the multi-scale Retinex algorithm of a single image enhancement. Advantages of the method also include that it can significantly inhibit the halo artifacts and thus retain the details of the original images, it can improve the brightness and contrast of the image as well. The newly developed method in this paper has application potential to the images captured by pad and cell phone in the low illumination environment.
文摘The conventional method of seismic data acquisition geometry design is based on the assumption of horizontal subsurface reflectors, which often is not suitable for complex structure. We start from a controlled illumination analysis and put forward a method of seismic survey geometry design for target-oriented imaging. The method needs a velocity model obtained by a preliminary seismic interpretation. The one-way Fourier finite-difference wave propagator is used to extrapolate plane wave sources on the target layer to the surface. By analyzing the wave energy distribution at the surface extrapolated from the target layer, the shot or receiver locations needed for target layer imaging can be determined. Numerical tests using the SEG-EAGE salt model suggest that this method is useful for confirming the special seismic acquisition geometry layout for target-oriented imaging.
文摘Background: Non-uniformity in signal intensity occurs commonly in magnetic resonance (MR) imaging, which may pose substantial problems when using a 3T scanner. Therefore, image non-uniformity correction is usually applied. Purpose: To compare the correction effects of the phased-array uniformity enhancement (PURE), a calibration-based image non-uniformity correction method, among three different software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Material and Methods: Hepatobiliary-phase images of a total of 120 patients who underwent Gd-EOB-DTPA-enhanced MR imaging on the same 3T scanner were analyzed retrospectively. Forty patients each were examined using three software versions (DV25, DV25.1, and DV26). The effects of PURE were compared by visual assessment, histogram analysis of liver signal intensity, evaluation of the spatial distribution of correction effects, and evaluation of quantitative indices of liver parenchymal enhancement. Results: The visual assessment indicated the highest uniformity of PURE-corrected images for DV26, followed by DV25 and DV25.1. Histogram analysis of corrected images demonstrated significantly larger variations in liver signal for DV25.1 than for the other two versions. Although PURE caused a relative increase in pixel values for central and lateral regions, such effects were weaker for DV25.1 than for the other two versions. In the evaluation of quantitative indices of liver parenchymal enhancement, the liver-to-muscle ratio (LMR) was significantly higher for the corrected images than for the uncorrected images, but the liver-to-spleen ratio (LSR) showed no significant differences. For corrected images, the LMR was significantly higher for DV25 and DV26 than for DV25.1, but the LSR showed no significant differences among the three versions. Conclusion: There were differences in the effects of PURE among the three software versions in 3T Gd-EOB-DTPA-enhanced MR imaging. Even if the non-uniformity correction method has the same brand name, correction effects may differ depending on the software version, and these differences may affect visual and quantitative evaluations.
基金This work is supported in part by The National Natural Science Foundation of China(Grant Number 61971078),which provided domain expertise and computational power that greatly assisted the activityThis work was financially supported by Chongqing Municipal Education Commission Grants for-Major Science and Technology Project(Grant Number gzlcx20243175).
文摘Semantic segmentation of driving scene images is crucial for autonomous driving.While deep learning technology has significantly improved daytime image semantic segmentation,nighttime images pose challenges due to factors like poor lighting and overexposure,making it difficult to recognize small objects.To address this,we propose an Image Adaptive Enhancement(IAEN)module comprising a parameter predictor(Edip),multiple image processing filters(Mdif),and a Detail Processing Module(DPM).Edip combines image processing filters to predict parameters like exposure and hue,optimizing image quality.We adopt a novel image encoder to enhance parameter prediction accuracy by enabling Edip to handle features at different scales.DPM strengthens overlooked image details,extending the IAEN module’s functionality.After the segmentation network,we integrate a Depth Guided Filter(DGF)to refine segmentation outputs.The entire network is trained end-to-end,with segmentation results guiding parameter prediction optimization,promoting self-learning and network improvement.This lightweight and efficient network architecture is particularly suitable for addressing challenges in nighttime image segmentation.Extensive experiments validate significant performance improvements of our approach on the ACDC-night and Nightcity datasets.
基金This work is supported by National Natural Science Foundation of China (Nos.61361160418 and 61327902).
文摘The image reconstruction process in super-resolution structured illumination microscopy(SIM)is investigated.The structured pattern is generated by the interference of two Gaussian beams to encode undetectable spectra into detectable region of microscope.After parameters estimation of the structured pattern,the encoded spectra are computationally decoded and recombined in Fourier domain to equivalently increase the cut-off frequency of microscope,resulting in the extension of detectable spectra and a reconstructed image with about two-fold enhanced resolution.Three di®erent methods to estimate the initial phase of structured pattern are compared,verifying the auto-correlation algorithm a®ords the fast,most precise and robust measurement.The artifacts sources and detailed reconstruction°owchart for both linear and nonlinear SIM are also presented.
文摘A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.
文摘A method using spectrum illumination to reconstruct 3-D object image is a new concept in the field of computer vision. The design of optical illumination system is crucial in this method. Several ways to achieve multi-color spectrum illumination are discussed. A prism illumination system is designed by means of aligning symmetrically the prism at the mid-wavelength (n d=1.806 274) of light path and using reflection collimating lens, cylindrical expending lens and two optical shutters. The relations between deviation angles and light wavelengths are given, and some 3-D reconstruction results are presented.
基金supported by the National Natural Science Foundation of China (No.62375215)。
文摘Imaging objects hidden behind turbid media is of great scientific importance and practical value, which has been drawing a lot of attention recently. However, most of the scattering imaging methods rely on a narrow linewidth of light, limiting their application. A mixture of the scattering light from various spectra blurs the detected speckle pattern, bringing difficulty in phase retrieval. Image reconstruction becomes much worse for dynamic objects due to short exposure times. We here investigate non-invasively recovering images of dynamic objects under white-light irradiation with the multi-frame OTF retrieval engine (MORE). By exploiting redundant information from multiple measurements, MORE recovers the phases of the optical-transfer-function (OTF) instead of recovering a single image of an object. Furthermore, we introduce the number of non-zero pixels (NNP) into MORE, which brings improvement on recovered images. An experimental proof is performed for dynamic objects at a frame rate of 20 Hz under white-light irradiation of more than 300 nm bandwidth.
基金supported by National Forestry Public Welfare Industry Scientific Research Special Subsidy Project(201304502)
文摘In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.
基金This project is sporspored by Fund item:the National Development and Innovation Committee Program (2005) 2372the National High-tech R&D Program (863 Program) 2006AA06Z241 of ChinaYouth Innovation Fund of CNPC (Program:Prestack Imaging Integral Study for Complex near Surface)
文摘The Pre-Stack Depth Migration (PSDM) method based on wavefield continuation is the most reliable method for imaging complex structure in the subsurface, although there are large computational costs and poorly adaptive geometry. Plane wave shot migration is another method to perform exact wave equation prestack imaging with high computational efficiency and without the migration aperture problem. Moreover, wavefield energy can be compensated at the target zone by controlled illumination. In this paper, plane wave shot PSDM was implemented by the control of the plane down-going wavefield and selection of number and range of the raypaths in order to optimize the imaging effect. In addition, controlled illumination techniques are applied to enhance the imaging precision of interesting areas at different depths. Numerical calculation indicates that plane wave shot imaging is a rapid and efficient method with less computational cost and easy parallel computation compared to the single-square-root operator imaging for common shot gathers and double- square-root operator imaging for common midpoint gathers.
基金This work Was supported by National Natural Science Foundation of China(grant nos.61775148,61527827,and 61905145)Guangdong Natural Science Foundation and Province Project(2021A1515011916)Shenzhen Science and Technology R&D and Innovation Foundation(grant nos.JCYJ20200109105608771.J CYJ20180305124754860 and JCYJ20180228162956597).
文摘Structured illumination microscopy(SIM)is an essential super-resolution microscopy technique that enhances resolution.Several images are required to reconstruct a super-resolution image.However,linear SIM resolution enhancement can only increase the spatial resolution of micros-copy by a factor of two at most because the frequency of the structured illumination pattern is limited by the cutoff frequency of the excitation point spread function.The frequency of the pattern generated by the nonlinear response in samples is not limited;therefore,nonlinear SIM(NL-SIM),in theory,has no inherent limit to the resolution.In the present study,we describe a two-photon nonlinear SIM(2P-SIM)technique using a multiple harmonics scanning pattern that employs a composite structured illumination pattern,which can produce a higher order harmonic pattern based on the fluorescence nonlinear response in a 2P process.The theoretical models of super-resolution imaging were established through our simulation,which describes the working mechanism of the multi-frequency structure of the nonsinusoidal function to improve the reso-lution.The simulation results predict that a 5-fold improvement in resolution in the 2P-SIM is possible.
基金This work was funded by The National Key R&D Program of China(2016YFF0102000)Scientific Research and Equipment Development Project of CAS(YJKYYQ20180032 and YJKYYQ20190048)Major Innovative Research Team of Suzhou(ZXT2019007).
文摘Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging capabilities.Furthermore,faster three-dimensional imaging methods are required to help enable more research-oriented living cell imaging.In this paper,a fast and sensitive three-dimensional structured illumination microscopy based on asymmetric three-beam interference is proposed.An innovative time-series acquisition method is employed to halve the time required to obtain each raw image.A segmented half-wave plate as a substantial linear polarization modulation method is applied to the three-dimensional SIM system for the first time.Although it needs to acquire 21 raw images instead of 15 to reconstruct one super-resolution image,the SIM setup proposed in this paper is 30%faster than the traditional spatial light modulator-SIM(SLM-SIM)in imaging each super-resolution image.The related theoretical derivation,hardware system,and verification experiment are elaborated in this paper.The stable and fast 3D super-resolution imaging method proposed in this paper is of great significance to the research of organelle interaction,intercellular communication,and other biomedical fields.