By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By chan...By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.展开更多
This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions ...This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b...Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of...The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.展开更多
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect...This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection betw...In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing th...The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.展开更多
The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems ca...The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types.Controlling inclusions is of current interest for space technologies.In low gravity,even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary.When vibrations are applied to multiphase hydrodynamic systems,the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.Asymmetries in the fluid flow lead to the appearance of an averaged force.As a result,the body is repelled from the cavity boundary and takes a position at a certain distance from it.The vibrationally-induced movement of phase inclusions in liquids can be used to improve various technological processes(for example,when degassing and cleaning liquids from solid inclusions,mixing various components,etc.).This study presents a relevant methodology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall of a cavity.Attention is paid to the region of moderate and low dimensionless frequencies when the size of the inclusion is consistent with the thickness of the Stokes boundary layer.The dynamics of these bodies is considered in a horizontal cylindrical cavity with a fluid undergoing modulated rotation.The average lift force of a vibrational nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density of the liquid in a static centrifugal force field.The developed technique makes it possible to determine the dependence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclusions are located.It is shown that in the region of moderate dimensionless frequencies,the average lift force acting on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless frequency.展开更多
Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present...Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.展开更多
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t...A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.展开更多
Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em...Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.展开更多
The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitr...The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.Y23A040001 and LY21F050001)the National Key Research and Development Program of China(Grant No.2019YFA0307700),the National Natural Science Foundation of China(Grant Nos.12074145,11774219,11975012,12374029,12304378,and 12204214)+2 种基金the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20220101003JC)the Foundation of Education Department of Liaoning Province,China(Grant No.LJKMZ20221435)the National College Students Innovation and Entrepreneurship Training Program(Grant No.202310350062).
文摘By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends.In this setting,the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius.Three different regimes are found:inertial wave attractor,global oscillations(the cavity’s resonant modes)and regime of symmetric reflection of wave beams.In linear wave regimes,a steady single vortex elongated along the rotation axis is generated.The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign.In non-linear regimes several pairs of the triadic resonance subharmonics are detected simultaneously.The instability of triadic resonance is accompanied by the periodic generation of mean vortices drifting in the azimuthal direction.Moreover,the appearance frequency of the vortices is consistent with the low-frequency subharmonic of the triadic resonance.The experimental results shed light on the mechanisms of the inertial wave interaction with zonal flow and may be useful for the development of new methods of mixing.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金Project supported by the National Science and Technology Major Project of China (No. 2017-V-0009)the National Natural Science Foundation of China (Nos. 12032015 and 12121002)the National Funding Program for Postdoctoral Researchers of China (No. GZC20231586)。
文摘Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
基金supported by the Russian Science Foundation(Grant No.22-71-00086).
文摘The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.
基金support from the Key Technology Research and Development Program of Shandong Province(Project No.2019GGX102060).
文摘This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
基金funded by Taif University,Taif,Saudi Arabia(TU-DSPP-2024-172).
文摘In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
文摘The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.
基金financially supported by the Russian Science Foundation(Grant No.22-71-00081).
文摘The dynamics of rotating hydrodynamic systems containing phase inclusions are interesting due to the related widespread occurrence in nature and technology.The influence of external force fields on rotating systems can be used to control the dynamics of inclusions of various types.Controlling inclusions is of current interest for space technologies.In low gravity,even a slight vibration effect can lead to the appearance of a force acting on phase inclusions near a solid boundary.When vibrations are applied to multiphase hydrodynamic systems,the oscillating body intensively interacts with the fluid and introduces changes in the related flow structure.Asymmetries in the fluid flow lead to the appearance of an averaged force.As a result,the body is repelled from the cavity boundary and takes a position at a certain distance from it.The vibrationally-induced movement of phase inclusions in liquids can be used to improve various technological processes(for example,when degassing and cleaning liquids from solid inclusions,mixing various components,etc.).This study presents a relevant methodology to study the averaged vibrational force acting on a pair of free cylindrical bodies near the oscillating wall of a cavity.Attention is paid to the region of moderate and low dimensionless frequencies when the size of the inclusion is consistent with the thickness of the Stokes boundary layer.The dynamics of these bodies is considered in a horizontal cylindrical cavity with a fluid undergoing modulated rotation.The average lift force of a vibrational nature is measured by the method of quasi-stationary suspension of bodies whose density differs from the density of the liquid in a static centrifugal force field.The developed technique makes it possible to determine the dependence of the lift force on vibration parameters and the distance from the oscillating boundary at which solid inclusions are located.It is shown that in the region of moderate dimensionless frequencies,the average lift force acting on an inclusion near the boundary undergoing modulated rotation almost linearly depends on the dimensionless frequency.
基金the National Key Research and Development Program of China(No.2020YFC1107501)the National Natural Science Foundation of China(No.51971222,51801220)+4 种基金the Natural Science Foundation of Liaoning Province of China(No.2020-MS-001)the Dong Guan Innovative Research Team Program(No.2020607134012)the Military Translational Medicine Fund of Chinese PLA General Hospital(ZH19008)Capital’s Funds for Health Improvement and Research(CFH 2022-2-5051)the Dong Guan Science and Technology Service Network Initiative(20201600200042)。
文摘Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.
文摘A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604100,2016YFC1402004,2017YFC1404200)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe National Natural Science Foundation of China(Nos.41476022,41490643)。
文摘Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.
基金partially supported by National Natural Science Foundation of China(No.52477141)the Natural Science Foundation of the Jiangsu Province(No.BK20191162)+2 种基金Fundamental Research Funds for the Central Universities(No.B210203006)the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)Changzhou Science and Technology Program(No.CJ20190046).
文摘The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.