In order to reveal the surface modification mechanism of fine coal by electrochemical methods, the structural changes of the coal surface before and after electrochemical modification were investigated by Fourier Tran...In order to reveal the surface modification mechanism of fine coal by electrochemical methods, the structural changes of the coal surface before and after electrochemical modification were investigated by Fourier Transform In- frared Spectra (FTIR) and Raman Spectra. The results show that under certain electrochemical conditions, the oxy- gen-containing functional group in the coal structure and the oxygen content of absorption could be reduced and the floatability of coal improved. At the same time, the sulfur in the coal was reduced to the hydrophilic S2– which could be separated easily from coal. Thus electrochemical modification methods could be used to change the structure and func- tional group on the coal surface and to enhance the floatability of coal.展开更多
The paper is dedicated to the consideration of the chemical mesoscopics notions application for the explanation of polymeric materials modification mechanism by the metal carbon mesoscopic composites.The main peculiar...The paper is dedicated to the consideration of the chemical mesoscopics notions application for the explanation of polymeric materials modification mechanism by the metal carbon mesoscopic composites.The main peculiarities of these nanosized particles are following:a)the presence of unpaired electrons on the carbon cover;b)the structure of carbon cover consists from poly acetylene and carbine fragments;c)the atomic magnetic moment of inner metal is equaled to more than 1,3μB.The metal carbon mesocomposites activity depends on the medium and conditions influence because of the possible changes of the phase coherency and quantization of negative charges.展开更多
Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of...Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was disclosed that the spectral intensity and the intensity of the peaks in the fluorescent spectra dropped remarkably. This shows that the single-walled carbon nanotubes have absorbed a large number of phenoxy phthalocyanines. Raman analysis revealed that in the Raman spectra, the position of the main peaks of the single-walled carbon nanotubes after absorption moved in the direction of long waves. The analysis suggests that the movement of the Raman spectra results from the change in the state of the single-walled carbon nanotubes before and after absorption.展开更多
基金Project 50174054 supported by the National Natural Science Foundation of China
文摘In order to reveal the surface modification mechanism of fine coal by electrochemical methods, the structural changes of the coal surface before and after electrochemical modification were investigated by Fourier Transform In- frared Spectra (FTIR) and Raman Spectra. The results show that under certain electrochemical conditions, the oxy- gen-containing functional group in the coal structure and the oxygen content of absorption could be reduced and the floatability of coal improved. At the same time, the sulfur in the coal was reduced to the hydrophilic S2– which could be separated easily from coal. Thus electrochemical modification methods could be used to change the structure and func- tional group on the coal surface and to enhance the floatability of coal.
文摘The paper is dedicated to the consideration of the chemical mesoscopics notions application for the explanation of polymeric materials modification mechanism by the metal carbon mesoscopic composites.The main peculiarities of these nanosized particles are following:a)the presence of unpaired electrons on the carbon cover;b)the structure of carbon cover consists from poly acetylene and carbine fragments;c)the atomic magnetic moment of inner metal is equaled to more than 1,3μB.The metal carbon mesocomposites activity depends on the medium and conditions influence because of the possible changes of the phase coherency and quantization of negative charges.
文摘Organics of the phthalocyanine category have very good nonlinear optical properties. The single-walled carbon nanotubes were modified by using the phenoxy phthalocyanine. Characterization analysis was made by means of the transmission electron microscope (TEM), ultraviolet visible absorptive spectra, fluorescent spectra and Raman spectra. Under the TEM, it was observed that the composite looked like sugarcoated haws. By comparing the ultraviolet visible absorptive spectra before and after absorption, it was disclosed that the spectral intensity and the intensity of the peaks in the fluorescent spectra dropped remarkably. This shows that the single-walled carbon nanotubes have absorbed a large number of phenoxy phthalocyanines. Raman analysis revealed that in the Raman spectra, the position of the main peaks of the single-walled carbon nanotubes after absorption moved in the direction of long waves. The analysis suggests that the movement of the Raman spectra results from the change in the state of the single-walled carbon nanotubes before and after absorption.