We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the converg...We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from O(h3/4) to quasi-optimal O(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available, the convergence rate can be improved to the optimal O(h) as expected by the linear approximation.展开更多
文摘We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from O(h3/4) to quasi-optimal O(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available, the convergence rate can be improved to the optimal O(h) as expected by the linear approximation.