This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is p...This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.展开更多
Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are present...Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.展开更多
In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Str...In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.展开更多
This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and q...This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.展开更多
Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a noncon...Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.展开更多
In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ell...In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.展开更多
This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of ...This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.展开更多
文摘This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.
文摘Quadratic 0-1 problems with linear inequality constraints are briefly considered in this paper.Global optimality conditions for these problems,including a necessary condition and some sufficient conditions,are presented.The necessary condition is expressed without dual variables.The relations between the global optimal solutions of nonconvex quadratic 0-1 problems and the associated relaxed convex problems are also studied.
基金Supported by the fundamental research funds for the central universities under grant YWF-10-02-021 and by National Natural Science Foundation of China under grant 11001006 The author is very grateful to all the three anonymous referees for their constructive criticisms and useful suggestions that help to improve the paper.
文摘In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.
基金NSFC (Nos.10261001,10771040)Guangxi Province Science Foundation (No.0640001)
文摘This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.
基金supported by US Army Research Office Grant(No.W911NF-04-D-0003)by the North Carolina State University Edward P.Fitts Fellowship and by National Natural Science Foundation of China(No.11171177)。
文摘Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.
基金NsF of China (Grant No.60773185,10401038)Program for Beijing Excellent Talents and NSF of China (Grant No.10571134)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.
基金the National Natural Science Foundation of China(No.11101261).
文摘This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.
基金The work is supported by the Foundation of Natural Science China (grants 10271073) the Natural Science Foundation of National Committee in China in 2005.