This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to gen...This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to generate and focus ultrasounds on the surface of the flip chip to excite it,and a laser scanning vibrometer is applied to acquire the chip’s vibration signals.Then,an extreme learning machine-autoencoder(ELM-AE)structure is adopted to extract features from the original vibration signals layer by layer.Finally,the study proposes integrating the ELM with sparsity neighboring reconstruction to diagnose defects based on unlabeled and labeled data.The ISDELM algorithm is applied to experimental vibration data of flip chips and compared with several other algorithms,such as semi-supervised ELM(SS-ELM),deep ELM,stacked autoencoder,convolutional neural network,and ordinary SDELM.The results show that the proposed method is superior to the several currently available algorithms in terms of accuracy and stability.展开更多
基金supported by the fellowship of China Postdoctoral Science Foundation(Grant No.2021T140279)the National Natural Science Foundation of China(Grant Nos.51705203,51775243 and 11902124)“111”Project(Grant No.B18027)。
文摘This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to generate and focus ultrasounds on the surface of the flip chip to excite it,and a laser scanning vibrometer is applied to acquire the chip’s vibration signals.Then,an extreme learning machine-autoencoder(ELM-AE)structure is adopted to extract features from the original vibration signals layer by layer.Finally,the study proposes integrating the ELM with sparsity neighboring reconstruction to diagnose defects based on unlabeled and labeled data.The ISDELM algorithm is applied to experimental vibration data of flip chips and compared with several other algorithms,such as semi-supervised ELM(SS-ELM),deep ELM,stacked autoencoder,convolutional neural network,and ordinary SDELM.The results show that the proposed method is superior to the several currently available algorithms in terms of accuracy and stability.