A novel nonenzymatic glucose sensor was successfully fabricated based on the Cu2O polyhedrons covered Cu foil. The Cu2O polyhedrons covered Cu foil was constructed via a facile, low-cost and larger scale producible me...A novel nonenzymatic glucose sensor was successfully fabricated based on the Cu2O polyhedrons covered Cu foil. The Cu2O polyhedrons covered Cu foil was constructed via a facile, low-cost and larger scale producible method. The Cu2O polyhedrons covered Cu foil can be directly used as the working electrode of nonenzymatic glucose sensor, which present good stability and flexibility. The results indicated that the Cu2O polyhedrons modified Cu electrode (Cu2O/Cu electrode) showed high electrocatalytic activity for the oxidation of glucose in alkaline solution. There are two linear regions of glucose concentration for the glucose sensor based on Cu2O/Cu electrode, respectively in 10μmol/L to 0.53 mmol/L (sensitivity: 3029.33 μA (mmol/ L)^-1 cm^-2) and in 0.53-7.53 mmol/L (sensitivity: 728.67 μA (rnmol/L)^-1 cm^-2).展开更多
With increasing emphasis on green chemistry,biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials.Herein,a new pore-rich cellulose nanofibril aer...With increasing emphasis on green chemistry,biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials.Herein,a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition.This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose.With the synergistic effect of three heterogeneous components,the electrode achieves outstanding glucose sensing performance,including a high sensitivity(851.4μA·mmol^(−1)·L·cm^(−2)),a short response time(2.2 s),a wide linear range(two stages:0.001−8.145 and 8.145−35.500 mmol·L^(−1)),strong immunity to interference,outstanding intraelectrode and interelectrode reproducibility,a favorable toxicity resistance(Cl^(‒)),and a good long-term stability(maintaining 86.0%of the original value after 30 d).These data are superior to those of some traditional glucose sensors using nonbiomass substrates.When determining the blood glucose level of a human serum,this electrode realizes a high recovery rate of 97.07%–98.89%,validating the potential for highperformance blood glucose sensing.展开更多
基金supported by the Universities Natural Science Foundation of Jiangsu Province (No. 11KJB480001)Postdoctoral Foundation of Jiangsu Province (No. 1102125C)Highly Qualified Professional Initial Funding of Jiangsu University (No. 10JDG120)
文摘A novel nonenzymatic glucose sensor was successfully fabricated based on the Cu2O polyhedrons covered Cu foil. The Cu2O polyhedrons covered Cu foil was constructed via a facile, low-cost and larger scale producible method. The Cu2O polyhedrons covered Cu foil can be directly used as the working electrode of nonenzymatic glucose sensor, which present good stability and flexibility. The results indicated that the Cu2O polyhedrons modified Cu electrode (Cu2O/Cu electrode) showed high electrocatalytic activity for the oxidation of glucose in alkaline solution. There are two linear regions of glucose concentration for the glucose sensor based on Cu2O/Cu electrode, respectively in 10μmol/L to 0.53 mmol/L (sensitivity: 3029.33 μA (mmol/ L)^-1 cm^-2) and in 0.53-7.53 mmol/L (sensitivity: 728.67 μA (rnmol/L)^-1 cm^-2).
基金supported by the National Natural Science Foundation of China(Grant No.31901249),the Hunan Provincial Natural Science Foundation of China(Grant No.2022JJ30079)the Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology(Grant No.2020RC3041)the Training Program for Excellent Young Innovators of Changsha(Grant No.kq2106056).
文摘With increasing emphasis on green chemistry,biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials.Herein,a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition.This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose.With the synergistic effect of three heterogeneous components,the electrode achieves outstanding glucose sensing performance,including a high sensitivity(851.4μA·mmol^(−1)·L·cm^(−2)),a short response time(2.2 s),a wide linear range(two stages:0.001−8.145 and 8.145−35.500 mmol·L^(−1)),strong immunity to interference,outstanding intraelectrode and interelectrode reproducibility,a favorable toxicity resistance(Cl^(‒)),and a good long-term stability(maintaining 86.0%of the original value after 30 d).These data are superior to those of some traditional glucose sensors using nonbiomass substrates.When determining the blood glucose level of a human serum,this electrode realizes a high recovery rate of 97.07%–98.89%,validating the potential for highperformance blood glucose sensing.