This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Suf...Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.展开更多
This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under ...This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.展开更多
The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, th...The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, the restriction equations, the structure equation and the form of the conserved quantities were obtained.展开更多
In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrat...In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrate its application.展开更多
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the no...Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.展开更多
For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are stu...For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.展开更多
The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange princi...The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal trans- formations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.展开更多
In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's ty...In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's type, and present expressions of three kinds of conserved quantities by weakly Noether symmetry. Finally, the application of this new result is shown by a practical example.展开更多
The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equat...The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equations of motion of the system are established. The definition and the criterion of form invariance of the system are given. The conserved quantity deduced from the form invariance is obtained. Finally, an illustrative example is shown.展开更多
In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE...In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.展开更多
A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backste...A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.展开更多
Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differenti...Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constr...To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.展开更多
This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the ...This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the existence of the new conserved quantities as well as their forms are proposed. Some special cases are given to illustrate the generalized significance of the new type conserved quantity. Finally, an illustrated example is given to show the application of the nonholonomic system's results.展开更多
A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic ...A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
For conservative linear homogeneous nonholonomic systems, there exists a cotangent bundle with the symplectic structure dπμ∧ dξμ, in which the motion equations of the system can be written into the form of the ca...For conservative linear homogeneous nonholonomic systems, there exists a cotangent bundle with the symplectic structure dπμ∧ dξμ, in which the motion equations of the system can be written into the form of the canonical equations by the set of quasi-coordinates πμand quasi-momenta ξμ. The key to construct this cotangent bundle is to define a set of suitable quasi-coordinates πμby a first-order linear mapping, so that the reduced configuration space of the system is a Riemann space with no torsion. The Hamilton–Jacobi method for linear homogeneous nonholonomic systems is studied as an application of the quasi-canonicalization. The Hamilton–Jacobi method can be applied not only to Chaplygin nonholonomic systems, but also to non-Chaplygin nonholonomic systems. Two examples are given to illustrate the effectiveness of the quasi-canonicalization and the Hamilton–Jacobi method.展开更多
Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The dif...Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The differential equations of motion of the system above are established. The criteria of the Lie symmetry, the Noether symmetry and the form invariance are given and the relations between them are obtained. The Hojman conserved quantities are gained by which the Hojman theorem is extended and applied to the nonholonomic system of the unilateral non-Chetacv type in the event space. An example is given to illustrate the application of the results.展开更多
It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsform...It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsformation function and is manifestly dependent upon constants of motion of th e system. An example was given to illustrate the applicability of the results.展开更多
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10672143 and 10572021
文摘Mei symmetry of Tzenoff equations for nonholonomic systems of non-Chetaev's type under the infinitesimal transformations of groups is studied. Its definitions and discriminant equations of Mei symmetry are given. Sufficient and necessary condition of Lie symmetry deduced by the Mei symmetry is also given. Hojman conserved quantity of Tzenoff equations for the systems through Lie symmetry in the condition of special Mei symmetry is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002 and 10772025)the Fund for Fundamental Research of Beijing Institute of Technology
文摘This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.
文摘The invariance of the differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities of arbitrary order nonholonomic systems. The determining equations, the restriction equations, the structure equation and the form of the conserved quantities were obtained.
基金The project supported by the National Natural Science Foundation of China
文摘In this paper,the field method for solving the equations of motion of holonomic nonconservative systems is extended to nonholonomic systems with constant mass and with variable mass.Two examples are given to illustrate its application.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
文摘Based on the theory of Lie symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic system in terms of quasi-coordinates are studied. The perturbation to symmetries for the nonholonomic system in terms of quasi-coordinates under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the forms of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
基金supported by the National Natural Science Foundation of China(No.11272227)
文摘For an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Firstly,the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University of China(Grant No.IRT13097)
文摘The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is estab- lished, and the fractional Lagrange equations are obtained by virtue of the d'Alembert-Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal trans- formations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.
基金National Natural Science Foundation of China under Grant Nos.10572021 and 10772025the Doctoral Program Foundation of the Institution of Higher Education of China under Grant No.20040007022
文摘In the paper [J. of Beijing Institute of Technology 26 (2006) 285] the authors provided the definition of weakly Noether symmetry. We now discuss the weakly Noether symmetry for non-holonomic system of Chetaev's type, and present expressions of three kinds of conserved quantities by weakly Noether symmetry. Finally, the application of this new result is shown by a practical example.
基金supported by the National Natural Science Foundation of China(Nos.10932002,10972031,and 11272050)
文摘The form invariance and the conserved quantity for a weakly nonholonomic system (WNS) are studied. The WNS is a nonholonomic system (NS) whose constraint equations contain a small parameter. The differential equations of motion of the system are established. The definition and the criterion of form invariance of the system are given. The conserved quantity deduced from the form invariance is obtained. Finally, an illustrative example is shown.
基金supported by the Beijing Natural Science Foundation(4222053).
文摘In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.
基金supported by National Natural Science Foundation of China (No. 60674027)
文摘A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.
文摘Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient. condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether. conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
文摘To study the Noether's theorem of nonholonomic systems of non_Chetaev's type with unilateral constraints in event space, firstly, the principle of D'Alembert_Lagrange for the systems with unilateral constraints in event space is presented, secondly, the Noether's theorem and the Noether's inverse theorem for the nonholonomic systems of non_Chetaev's type with unilateral constraints in event space are studied and obtained, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, finally, an example is given to illustrate the application of the result.
文摘This paper studies the new type of conserved quantity which is directly induced by Mei symmetry of nonholonomic systems in terms of quasi-coordinates. A coordination function is introduced, and the conditions for the existence of the new conserved quantities as well as their forms are proposed. Some special cases are given to illustrate the generalized significance of the new type conserved quantity. Finally, an illustrated example is given to show the application of the nonholonomic system's results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The form invariance and the approximate conserved quantity of the Appell equations for a weakly nonholonomic system are studied. The Appell equations for the weakly nonholonomic system are established, and the definition and the criterion of form invariance of the system are given. The structural equation of form invariance for the weakly nonholonomic system and the approximate conserved quantity deduced from the form invariance of the system are obtained. Finally, an example is given to illustrate the application of the results.
基金National Natural Science Foundation of China(Grant Nos.11972177,11972122,11802103,11772144,11872030,and 11572034)the Scientific Research Starting Foundation for Scholars with Doctoral Degree of Guangdong Medical University(Grant Nos.B2019042 and B2019021).
文摘For conservative linear homogeneous nonholonomic systems, there exists a cotangent bundle with the symplectic structure dπμ∧ dξμ, in which the motion equations of the system can be written into the form of the canonical equations by the set of quasi-coordinates πμand quasi-momenta ξμ. The key to construct this cotangent bundle is to define a set of suitable quasi-coordinates πμby a first-order linear mapping, so that the reduced configuration space of the system is a Riemann space with no torsion. The Hamilton–Jacobi method for linear homogeneous nonholonomic systems is studied as an application of the quasi-canonicalization. The Hamilton–Jacobi method can be applied not only to Chaplygin nonholonomic systems, but also to non-Chaplygin nonholonomic systems. Two examples are given to illustrate the effectiveness of the quasi-canonicalization and the Hamilton–Jacobi method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021).
文摘Hojman conserved quantities deduced from the special Lie symmetry, the Noether symmetry and the form invariance for a nonholonomic system of the unilateral non-Chetacv type in the event space are investigated. The differential equations of motion of the system above are established. The criteria of the Lie symmetry, the Noether symmetry and the form invariance are given and the relations between them are obtained. The Hojman conserved quantities are gained by which the Hojman theorem is extended and applied to the nonholonomic system of the unilateral non-Chetacv type in the event space. An example is given to illustrate the application of the results.
文摘It was proved that velocity-dependent infinitesima l symmetry transformations of nonholonomic systems have a characteristic functio nal structure, which could be formulated by means of an auxiliary symmetry tra nsformation function and is manifestly dependent upon constants of motion of th e system. An example was given to illustrate the applicability of the results.