Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeu...Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O^(6)-methylguanine(O^(6)-MG)-DNA-methyltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensitivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.展开更多
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing...DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.展开更多
Recent studies revealed the relationship among homologous recombination repair(HRR),androgen receptor(AR),and poly(adenosine diphosphate-ribose)polymerase(PARP);however,the synergy between anti-androgen enzalutamide(E...Recent studies revealed the relationship among homologous recombination repair(HRR),androgen receptor(AR),and poly(adenosine diphosphate-ribose)polymerase(PARP);however,the synergy between anti-androgen enzalutamide(ENZ)and PARP inhibitor olaparib(OLA)remains unclear.Here,we showed that the synergistic effect of ENZ and OLA significantly reduced proliferation and induced apoptosis in AR-positive prostate cancer cell lines.Next-generation sequencing followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed the significant effects of ENZ plus OLA on nonhomologous end joining(NHEJ)and apoptosis pathways.ENZ combined with OLA synergistically inhibited the NHEJ pathway by repressing DNA-dependent protein kinase catalytic subunit(DNA-PKcs)and X-ray repair cross complementing 4(XRCC4).Moreover,our data showed that ENZ could enhance the response of prostate cancer cells to the combination therapy by reversing the anti-apoptotic effect of OLA through the downregulation of anti-apoptotic gene insulin-like growth factor 1 receptor(IGF1R)and the upregulation of pro-apoptotic gene death-associated protein kinase 1(DAPK1).Collectively,our results suggested that ENZ combined with OLA can promote prostate cancer cell apoptosis by multiple pathways other than inducing HRR defects,providing evidence for the combined use of ENZ and OLA in prostate cancer regardless of HRR gene mutation status.展开更多
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-...Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.展开更多
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromo...DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.展开更多
Nonhomologous DNA end joining (NHEJ) is the primary pathway for repair of double-strand DNA breaks in human cells and in multicellular eukaryotes. The causes of double-strand breaks often fragment the DNA at the sit...Nonhomologous DNA end joining (NHEJ) is the primary pathway for repair of double-strand DNA breaks in human cells and in multicellular eukaryotes. The causes of double-strand breaks often fragment the DNA at the site of damage, resulting in the loss of information there. NHEJ does not restore the lost information and may resect additional nucleotides during the repair process. The ability to repair a wide range of overhang and damage configurations reflects the flexibility of the nuclease, polymerases, and ligase of NHEJ. The flexibility of the individual components also explains the large number of ways in which NHEJ can repair any given pair of DNA ends. The loss of information locally at sites of NHEJ repair may contribute to cancer and aging, but the action by NHEJ ensures that entire segments of chromosomes are not lost.展开更多
Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the effici...Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference(CRISPRi) and Natronobacterium gregoryi Argonaute(NgAgo) interference(NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase(PNKP), DNA ligase IV(LIG4), and NHEJ1. Suppression of KU70 and KU80 by CRISPRi dramatically promoted(P<0.05) the efficiency of HR to 1.85-and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase(P>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed(P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve(P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9(dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo.展开更多
Due to a wide range of clinical response in patients un-dergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients recei...Due to a wide range of clinical response in patients un-dergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients receiving the same form of treatment.Despite extensive research in this field,the exact mechanisms still remain elusive.Data raging from DNA-repair to specific molecules lead-ing to cell survival as well as resistance to apoptosis have been investigated.Individually,or in combination,there is no single pathway that has become clinically applicable to date.In the following review,we describe the current status of various pathways that might lead to resistance to the therapeutic applications of ionizing radiation in rectal cancer.展开更多
To improve the performance of yeast cell factories for industrial production,extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks(DSBs)to introduce mutations...To improve the performance of yeast cell factories for industrial production,extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks(DSBs)to introduce mutations with the assistance of intracellular DSB repair.Diverse strategies of DSB repair are required to meet various demands,including precise editing or random editing with customized gRNAs or a gRNA library.Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification,industrial yeast strain manipulation relies only on very limited strategies.Here,we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species.The discussion of DSB repair covers the most frequently used homologous recombination(HR)and nonhomologous end joining(NHEJ)strategies to the less well-studied illegitimate recombination(IR)pathways,such as single-strand annealing(SSA)and microhomology-mediated end joining(MMEJ).Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described.Finally,we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing,providing a direction for further development of yeast genome editing.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82003807,82173394)the Shaanxi Province Science Foundation,China(Grant No.:2023-GHZD-19)+1 种基金the Medical Foundation-Clinical Integration Program of Xi'an Jiaotong University,China(Grant No.:YXJLRH2022043)the Xi'an Jiaotong University Free Exploration and Innovation-Teacher Project Foundation,China(Grant No.:xzy012023104).
文摘Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O^(6)-methylguanine(O^(6)-MG)-DNA-methyltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensitivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
文摘DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.
基金This work was supported by the National Natural Science Foundation of China(82002718)the Jiangsu Natural Science Foundation(BK20191077)Jiangsu Province Hospital(the First Affiliated Hospital of Nanjing Medical University)Clinical Capacity Enhancement Project(JSPH-MC-2021-12).
文摘Recent studies revealed the relationship among homologous recombination repair(HRR),androgen receptor(AR),and poly(adenosine diphosphate-ribose)polymerase(PARP);however,the synergy between anti-androgen enzalutamide(ENZ)and PARP inhibitor olaparib(OLA)remains unclear.Here,we showed that the synergistic effect of ENZ and OLA significantly reduced proliferation and induced apoptosis in AR-positive prostate cancer cell lines.Next-generation sequencing followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed the significant effects of ENZ plus OLA on nonhomologous end joining(NHEJ)and apoptosis pathways.ENZ combined with OLA synergistically inhibited the NHEJ pathway by repressing DNA-dependent protein kinase catalytic subunit(DNA-PKcs)and X-ray repair cross complementing 4(XRCC4).Moreover,our data showed that ENZ could enhance the response of prostate cancer cells to the combination therapy by reversing the anti-apoptotic effect of OLA through the downregulation of anti-apoptotic gene insulin-like growth factor 1 receptor(IGF1R)and the upregulation of pro-apoptotic gene death-associated protein kinase 1(DAPK1).Collectively,our results suggested that ENZ combined with OLA can promote prostate cancer cell apoptosis by multiple pathways other than inducing HRR defects,providing evidence for the combined use of ENZ and OLA in prostate cancer regardless of HRR gene mutation status.
文摘Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in P MN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration.In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.
文摘DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
文摘Nonhomologous DNA end joining (NHEJ) is the primary pathway for repair of double-strand DNA breaks in human cells and in multicellular eukaryotes. The causes of double-strand breaks often fragment the DNA at the site of damage, resulting in the loss of information there. NHEJ does not restore the lost information and may resect additional nucleotides during the repair process. The ability to repair a wide range of overhang and damage configurations reflects the flexibility of the nuclease, polymerases, and ligase of NHEJ. The flexibility of the individual components also explains the large number of ways in which NHEJ can repair any given pair of DNA ends. The loss of information locally at sites of NHEJ repair may contribute to cancer and aging, but the action by NHEJ ensures that entire segments of chromosomes are not lost.
基金supported by the National Science and Technology Major Project for Breeding of New Transgenic Organisms, China (2016ZX08006002)the Guangdong Province "Flying Sail Program" Postdoctoral Foundation, China (2016)
文摘Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference(CRISPRi) and Natronobacterium gregoryi Argonaute(NgAgo) interference(NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase(PNKP), DNA ligase IV(LIG4), and NHEJ1. Suppression of KU70 and KU80 by CRISPRi dramatically promoted(P<0.05) the efficiency of HR to 1.85-and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase(P>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed(P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve(P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9(dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo.
文摘Due to a wide range of clinical response in patients un-dergoing neo-adjuvant chemoradiation for rectal cancer it is essential to understand molecular factors that lead to the broad response observed in patients receiving the same form of treatment.Despite extensive research in this field,the exact mechanisms still remain elusive.Data raging from DNA-repair to specific molecules lead-ing to cell survival as well as resistance to apoptosis have been investigated.Individually,or in combination,there is no single pathway that has become clinically applicable to date.In the following review,we describe the current status of various pathways that might lead to resistance to the therapeutic applications of ionizing radiation in rectal cancer.
基金supported by the National Key Research and Development Program of China(No.2021YFC2101203)the General project of National Natural Science Foundation of China(No.22078021).
文摘To improve the performance of yeast cell factories for industrial production,extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks(DSBs)to introduce mutations with the assistance of intracellular DSB repair.Diverse strategies of DSB repair are required to meet various demands,including precise editing or random editing with customized gRNAs or a gRNA library.Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification,industrial yeast strain manipulation relies only on very limited strategies.Here,we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species.The discussion of DSB repair covers the most frequently used homologous recombination(HR)and nonhomologous end joining(NHEJ)strategies to the less well-studied illegitimate recombination(IR)pathways,such as single-strand annealing(SSA)and microhomology-mediated end joining(MMEJ).Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described.Finally,we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing,providing a direction for further development of yeast genome editing.