Objective: The purpose of this study is to review the clinical experience and performance of noninvasive prenatal testing (NIPT) method, using cell-free DNAto detect chromosomes 21, 18, 13, X, and Y abnormalities in o...Objective: The purpose of this study is to review the clinical experience and performance of noninvasive prenatal testing (NIPT) method, using cell-free DNAto detect chromosomes 21, 18, 13, X, and Y abnormalities in over 7910 clinical samples from South Korean population. Method: Pregnant women between 1st of November 2015 to 18th of February 2018, with obstetric clinical findings participated in the study. NIPT was performed based on masivelly parallel sequencing with 0.3× low coverage paired-end sequencing using cell-free DNA in maternal plasma. Further invasive prenatal testing was recommended for pregnant women with positive NIPT results. Results: Of the total 7910 participants, 7890 (99.75%) were tested for NIPT and the remaining 20 (0.25%) were below the Quality Control (QC) standards. T13, T18, XXX, XXY and XYY had 100% of sensitivity, specificity, positive predictive values (PPV) and accuracy. The overall sensitivity was 100% and specificity, PPV and accuracy of all chromosomal abnormalities with further validation were 99.92%, 94.25%, and, 99.92% respectively. Conclusion: Our NIPT results showed high positive predictive value for the detection of autosomal trisomies and sex chromosome aneuploidies in our sample cohort.展开更多
The concentration of cell-free fetal DNA fragments should be detected before noninvasive prenatal testing(NIPT).The fetal DNA molecules have significant clinical potential in determining the overall performance of NIP...The concentration of cell-free fetal DNA fragments should be detected before noninvasive prenatal testing(NIPT).The fetal DNA molecules have significant clinical potential in determining the overall performance of NIPT and clinical interpretation.It is important to measure fetal DNA fraction before NIPT.However,there is still little research on how to calculate the concentration of female fetuses.Two estimation approaches were proposed to calculate fetal DNA fraction,including the fragments size-based approach,aneuploid-based approach,which are all approaches based on chromosome segments.Based on high-throughput sequencing data,two approaches to calculate the DNA fraction of male fetuses were tested and obtained the experiment values,which were close to the actual values.The correlation coefficient of fragments size-based approach was 0.9243(P<0.0001)and the aneuploid-based approach reached 0.9339(P<0.0001).We calculated the concentration of female fetuses and obtained remarkable experimental results.We came up with two approaches for calculating the fetal DNA fraction of female fetuses.It provides an important theoretical basis for the detection of female fetal concentration in future clinical diagnosis.展开更多
Objective: To improve the detecting accuracy of chromosomal aneuploidy of fetus by non-invasive prenatal testing (NIPT) using next generation sequencing data of pregnant women’s cell-free DNA. Methods: We proposed th...Objective: To improve the detecting accuracy of chromosomal aneuploidy of fetus by non-invasive prenatal testing (NIPT) using next generation sequencing data of pregnant women’s cell-free DNA. Methods: We proposed the multi-Z method which uses 21 z-scores for each autosomal chromosome to detect aneuploidy of the chromosome, while the conventional NIPT method uses only one z-score. To do this, mapped read numbers of a certain chromosome were normalized by those of the other 21 chromosomes. Average and standard deviation (SD), which are used for calculating z-score of each sample, were obtained with normalized values between all autosomal chromosomes of control samples. In this way, multiple z-scores can be calculated for 21 autosomal chromosomes except oneself. Results: Multi-Z method showed 100% sensitivity and specificity for 187 samples sequenced to 3 M reads while the conventional NIPT method showed 95.1% specificity. Similarly, for 216 samples sequenced to 1 M reads, Multi-Z method showed 100% sensitivity and 95.6% specificity and the conventional NIPT method showed a result of 75.1% specificity. Conclusion: Multi-Z method showed higher accuracy and robust results than the conventional method even at low coverage reads.展开更多
文摘Objective: The purpose of this study is to review the clinical experience and performance of noninvasive prenatal testing (NIPT) method, using cell-free DNAto detect chromosomes 21, 18, 13, X, and Y abnormalities in over 7910 clinical samples from South Korean population. Method: Pregnant women between 1st of November 2015 to 18th of February 2018, with obstetric clinical findings participated in the study. NIPT was performed based on masivelly parallel sequencing with 0.3× low coverage paired-end sequencing using cell-free DNA in maternal plasma. Further invasive prenatal testing was recommended for pregnant women with positive NIPT results. Results: Of the total 7910 participants, 7890 (99.75%) were tested for NIPT and the remaining 20 (0.25%) were below the Quality Control (QC) standards. T13, T18, XXX, XXY and XYY had 100% of sensitivity, specificity, positive predictive values (PPV) and accuracy. The overall sensitivity was 100% and specificity, PPV and accuracy of all chromosomal abnormalities with further validation were 99.92%, 94.25%, and, 99.92% respectively. Conclusion: Our NIPT results showed high positive predictive value for the detection of autosomal trisomies and sex chromosome aneuploidies in our sample cohort.
基金supported by the National Key Research and Development Program of China 2016YFC1000307The sub-project of National Key Research and Development Program of China 2016YFC1000307-10the Program of National Research Institute for Family Planning(2017GJM04,2018CNV).
文摘The concentration of cell-free fetal DNA fragments should be detected before noninvasive prenatal testing(NIPT).The fetal DNA molecules have significant clinical potential in determining the overall performance of NIPT and clinical interpretation.It is important to measure fetal DNA fraction before NIPT.However,there is still little research on how to calculate the concentration of female fetuses.Two estimation approaches were proposed to calculate fetal DNA fraction,including the fragments size-based approach,aneuploid-based approach,which are all approaches based on chromosome segments.Based on high-throughput sequencing data,two approaches to calculate the DNA fraction of male fetuses were tested and obtained the experiment values,which were close to the actual values.The correlation coefficient of fragments size-based approach was 0.9243(P<0.0001)and the aneuploid-based approach reached 0.9339(P<0.0001).We calculated the concentration of female fetuses and obtained remarkable experimental results.We came up with two approaches for calculating the fetal DNA fraction of female fetuses.It provides an important theoretical basis for the detection of female fetal concentration in future clinical diagnosis.
文摘Objective: To improve the detecting accuracy of chromosomal aneuploidy of fetus by non-invasive prenatal testing (NIPT) using next generation sequencing data of pregnant women’s cell-free DNA. Methods: We proposed the multi-Z method which uses 21 z-scores for each autosomal chromosome to detect aneuploidy of the chromosome, while the conventional NIPT method uses only one z-score. To do this, mapped read numbers of a certain chromosome were normalized by those of the other 21 chromosomes. Average and standard deviation (SD), which are used for calculating z-score of each sample, were obtained with normalized values between all autosomal chromosomes of control samples. In this way, multiple z-scores can be calculated for 21 autosomal chromosomes except oneself. Results: Multi-Z method showed 100% sensitivity and specificity for 187 samples sequenced to 3 M reads while the conventional NIPT method showed 95.1% specificity. Similarly, for 216 samples sequenced to 1 M reads, Multi-Z method showed 100% sensitivity and 95.6% specificity and the conventional NIPT method showed a result of 75.1% specificity. Conclusion: Multi-Z method showed higher accuracy and robust results than the conventional method even at low coverage reads.