The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. Th...The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.展开更多
The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we e...The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values.. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.展开更多
Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and rel...Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.展开更多
In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the...In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.展开更多
Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving ...Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving methods. These methods mainly include iterative algorithms and direct algorithms mainly. The former searches some methods of rapid convergence based on which surveying adjustment is a kind of problem of nonlinear programming. Among them the iterative algorithms of the most in common use are the Gauss-Newton method, damped least quares, quasi-Newton method and some mutations etc. Although these methods improved the quantity of the observation results to a certain degree, and increased the accuracy of the adjustment results, what we want is whether the initial values of unknown parameters are close to their real values. Of course, the model of the latter has better degree in linearity, that is to say, they nearly have the meaning of deeper theories researches. This paper puts forward a kind of method of solving the problems of nonlinear least squares adjustment by parameters based on neural network theory, and studies its stability and convergency. The results of calculating of living example indicate the method acts well for solving parameters problems by nonlinear least squares adjustment without giving exact approximation of parameters.展开更多
An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace def...An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.展开更多
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th...A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).展开更多
Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters a...Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.展开更多
A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Nu...A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual, small-residual and large-residual problems.展开更多
In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partia...An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a...A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.展开更多
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed alg...The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy.展开更多
Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper s...Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金Supported by the National Natural Science Foundation of China (40174003)
文摘The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
文摘The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values.. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.
文摘Data coming from different sources have different types and temporal states. Relations between one type of data and another ones, or between data and unknown parameters are almost nonlinear. It is not accurate and reliable to process the data in building the digital earth with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method was put forward to process data in building the digital earth. A separating solution model and the iterative calculation method were used to solve the generalized nonlinear dynamic least squares problem. In fact, a complex problem can be separated and then solved by converting to two sub problems, each of which has a single variable. Therefore the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations.
基金Supported by the National Natural Science Foundation of China (10231060), the Special Research Found of Doctoral Program of Higher Education of China(200d0319003 ), the Research Project of Xuzhou Institute of Technology( XKY200622).
基金State Major Key Project for Basic ResearchesDecision Making and Information System Laboratory+1 种基金 Academy of Science of China Natural Science Foundation of Tsinghua University.
文摘In this paper we present a nonmonotone trust region method for nonlinear least squares problems with zero-residual and prove its convergence properties. The extensive numerical results are reported which show that the nonmonotone trust region method is generally superior to the usual trust region method.
基金Project (40174003) supported by the National Natural Science Foundation of China
文摘Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving methods. These methods mainly include iterative algorithms and direct algorithms mainly. The former searches some methods of rapid convergence based on which surveying adjustment is a kind of problem of nonlinear programming. Among them the iterative algorithms of the most in common use are the Gauss-Newton method, damped least quares, quasi-Newton method and some mutations etc. Although these methods improved the quantity of the observation results to a certain degree, and increased the accuracy of the adjustment results, what we want is whether the initial values of unknown parameters are close to their real values. Of course, the model of the latter has better degree in linearity, that is to say, they nearly have the meaning of deeper theories researches. This paper puts forward a kind of method of solving the problems of nonlinear least squares adjustment by parameters based on neural network theory, and studies its stability and convergency. The results of calculating of living example indicate the method acts well for solving parameters problems by nonlinear least squares adjustment without giving exact approximation of parameters.
基金Supported by The Natural Science Fundations of China and Jiangsu
文摘An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.
文摘A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).
文摘Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.
文摘A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual, small-residual and large-residual problems.
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
基金National Natural Science Foundation of China (No. 61074079)Shanghai Leading Academic Discipline Project,China (No.B504)
文摘An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金Project(50925727) supported by the National Fund for Distinguish Young Scholars of ChinaProject(60876022) supported by the National Natural Science Foundation of China+1 种基金Project(2010FJ4141) supported by Hunan Provincial Science and Technology Foundation,ChinaProject supported by the Fund of the Key Construction Academic Subject (Optics) of Hunan Province,China
文摘A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
文摘The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy.
文摘Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.