The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes w...The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes with parallel nature which are pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) schemes. It also gives the existence and uniqueness,the stability and the error estimate of numerical solutions for the parallel difference schemes. Theoretical analysis demonstrates that PASE-I and PASI-E schemes have obvious parallelism, unconditionally stability and second-order convergence in both space and time. The numerical experiments verify that the calculation accuracy of PASE-I and PASI-E schemes are better than that of the existing alternating segment Crank-Nicolson scheme, alternating segment explicit-implicit and implicit-explicit schemes. The speedup of PASE-I scheme is 9.89, compared to classical Crank-Nicolson scheme. Thus the schemes given by this paper are high efficient and practical for solving the nonlinear Leland equation.展开更多
基金supported by National Natural Science Foundation of China(No.11371135)the Fundamental Research Funds for the Central Universities(WK2014ZZD10)
文摘The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes with parallel nature which are pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) schemes. It also gives the existence and uniqueness,the stability and the error estimate of numerical solutions for the parallel difference schemes. Theoretical analysis demonstrates that PASE-I and PASI-E schemes have obvious parallelism, unconditionally stability and second-order convergence in both space and time. The numerical experiments verify that the calculation accuracy of PASE-I and PASI-E schemes are better than that of the existing alternating segment Crank-Nicolson scheme, alternating segment explicit-implicit and implicit-explicit schemes. The speedup of PASE-I scheme is 9.89, compared to classical Crank-Nicolson scheme. Thus the schemes given by this paper are high efficient and practical for solving the nonlinear Leland equation.