Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultim...Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.展开更多
Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of...Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of almost all types of rocks, A nonlinear Hock-Brown failure criterion is employed to estimate the supporting pressures of shallow tunnels in limit analysis framework. Two failure mechanisms are proposed for calculating the work rate of extemal force and the internal energy dissipation. A tangential line to the nonlinear failure criterion is used to formulate the supporting pressure problem as a nonlinear programming problem. The objective function formulated in this way is minimized with respect to the failure mechanism and the location of tangency point. In order to assess the validity, the supporting pressures for the proposed failure mechanisms are calculated and compared with each other, and the present results are compared with previously published solutions when the nonlinear criterion is reduced to linear criterion. The agreement supports the validity of the proposed failure mechanisms. An experiment is conducted to investigate the influences of the nonlinear criterion on collapse shape and supporting pressures of shallow tunnels.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness o...The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.展开更多
For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils foll...For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils followed power-law failure criterion.In this work,deep buried highway tunnel with large section was taken as objective,and the basic expressions of collapse shape and region were deduced for the highway tunnels in soils,based on kinematical approach and power-law failure criterion.In order to see the effectiveness of the proposed expressions,the solutions presented in this work agree well with previous results if the nonlinear failure criterion is reduced to a linear Mohr-Coulomb failure criterion.The present results are compared with practical projects and tunnel design code.The numerical results show that the height and width of tunnel collapse are greatly affected by the nonlinear criterion for the tunnel in soil.展开更多
Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stabili...Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering.展开更多
The nonlinear Baker failure criterion is introduced into the upper-bound limit analysis to examine the face stability of a shallow tunnel. The tunnel face under the ultimate limit state is analyzed from the perspectiv...The nonlinear Baker failure criterion is introduced into the upper-bound limit analysis to examine the face stability of a shallow tunnel. The tunnel face under the ultimate limit state is analyzed from the perspective of energy balance. The work rates of external forces and internal energy dissipation are calculated. An analytical solution of necessary face pressures is derived. The optimal upper-bound solution of the face pressures is obtained by optimization. The results show that the three dimensionless parameters A, T, n of nonlinear Baker failure criterion have different effects on the necessary face pressures and the pattern failure mechanisms ahead of tunnel face. A is the most important one;n takes the second place, and T is the least one. The computed necessary face pressures are nonlinearly increasing when A is reduced. Combined with the actual monitoring data of Taxia tunnel, the calculation results in this paper is verified. It is suggested that the tunnel face supports should be strengthened timely in soft rocks to prevent the occurrence of face collapse.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solu...Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.展开更多
Although stability charts suggested by Hoek and Bray on the basis of Mohr-Coulomb criterion are used for rock slopes,but complete and precise recognition is required for distinguishing cohesive strength and Mohr-Coulo...Although stability charts suggested by Hoek and Bray on the basis of Mohr-Coulomb criterion are used for rock slopes,but complete and precise recognition is required for distinguishing cohesive strength and Mohr-Coulomb equivalent internal friction angle for rock mass.The paper by Lia et al.[6]is the only one that introduced rock slope charts according to Hoek-Brown failure criterion.In this paper,at first,this type of charts is introduced.Then,Mohr-Coulomb failure criterion charts[2]are compared and validated with Hoek-Brown failure criterion ones[6].Next,Bishop method utilizing Slide software is compared with Hoek-Brown failure criterion stability charts.Average standard deviation(ASD),root mean square error(RMSE)and variance account for(VAF)were used for the comparison.According to the results,because of high distribution and very low correlation among the comparisons,Hoek-Brown failure criterion charts are not efficient.展开更多
The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spen...The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors.展开更多
With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure...With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.展开更多
Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calcula...Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.展开更多
Sand production is a challenging issue in upstream oil and gas industry,causing operational and safety problems.Therefore,before drilling the wells,it is essential to predict and evaluate sanding onset of the wells.In...Sand production is a challenging issue in upstream oil and gas industry,causing operational and safety problems.Therefore,before drilling the wells,it is essential to predict and evaluate sanding onset of the wells.In this paper,new poroelastoplastic stress solutions around the perforation tunnel and tip based on the Mohr-Coulomb criterion are presented firstly.Based on the stress models,a tensile failure induced sanding onset prediction model for cased-perforated gas wells is derived.Then the analytical model is applied to field data to verify its applicability.The results from the perforation tip tensile failure induced sanding model are very close to field data.Therefore,this model is recommended for forecasting the critical conditions of sand production analysis.Such predictions are necessary for providing technical support for sand control decision-making and predicting the production condition at which sanding onset occurs.展开更多
The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soi...The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis.展开更多
The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The pote...The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique.Equating the external work rate to the internal energy dissipation,the optimum solutions to stability factors were determined by the nonlinear programming algorithm.From the numerical results,it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion,and the nonassociated flow rule reduces to the associated flow rule.The stability factors decrease by 39.7%with nonlinear parameter varying from 1.0 to 3.0.Dilation and nonlinearity have significant effects on the slope stability factors.展开更多
基金Project(51478477)supported by the National Natural Science Foundation of ChinaProject(2016CX012)supported by the Innovation-driven Project of Central South University,ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.
基金Foundation item: Project(2013CB036004) supported by the National Basic Research Program of China Project(51178468) supported by the National Natural Science Foundation of China
文摘Linear failure criterion is widely used in calculation of earth pressure acting on shallow tunnels. However, experimental evidence shows that nonlinear failure criterion is able to represent fairly well the failure of almost all types of rocks, A nonlinear Hock-Brown failure criterion is employed to estimate the supporting pressures of shallow tunnels in limit analysis framework. Two failure mechanisms are proposed for calculating the work rate of extemal force and the internal energy dissipation. A tangential line to the nonlinear failure criterion is used to formulate the supporting pressure problem as a nonlinear programming problem. The objective function formulated in this way is minimized with respect to the failure mechanism and the location of tangency point. In order to assess the validity, the supporting pressures for the proposed failure mechanisms are calculated and compared with each other, and the present results are compared with previously published solutions when the nonlinear criterion is reduced to linear criterion. The agreement supports the validity of the proposed failure mechanisms. An experiment is conducted to investigate the influences of the nonlinear criterion on collapse shape and supporting pressures of shallow tunnels.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51378510,51308072) supported by National Natural Science Foundation of ChinaProject(CX2014B069) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The geological hazards, such as water inrush and mud outburst, are easily induced by the high water pressure caverns ahead of a karst tunnel face. Therefore, it is a pivotal issue to determine the reserved thickness of rock plug during the construction of tunnels. The limit analysis principle is employed to analyze the safe thickness from the point of energy dissipation, and the nonlinear and non-associated characteristics of geotechnical materials are both considered. On the basis of a plane failure pattern of rock plug, the expressions of detaching curve and rock plug thickness are derived. The effect of each parameter on the safe thickness of rock plug is discussed in detail, which interprets the corresponding failure scope of rock plug. The obtained results indicate that the thickness of rock plug is highly influenced by the nonlinear dilatancy coefficient and the nonlinear coefficient. The proposed method is validated by a comparison of the calculated results with those of the engineering project of the "526 karst cavern" of Yunwushan tunnel. This proposed method can provide reference basis for the design and excavation of karst tunnels in the future.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils followed power-law failure criterion.In this work,deep buried highway tunnel with large section was taken as objective,and the basic expressions of collapse shape and region were deduced for the highway tunnels in soils,based on kinematical approach and power-law failure criterion.In order to see the effectiveness of the proposed expressions,the solutions presented in this work agree well with previous results if the nonlinear failure criterion is reduced to a linear Mohr-Coulomb failure criterion.The present results are compared with practical projects and tunnel design code.The numerical results show that the height and width of tunnel collapse are greatly affected by the nonlinear criterion for the tunnel in soil.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘Based on the active failure mechanism and passive failure mechanism for a pressurized tunnel face, the analytical solutions of the minimum collapse pressure and maximum blowout pressure that could maintain the stability of pressurized tunnel faces were deduced using limit analysis in conjunction with nonlinear failure criterion under the condition of pore water pressure. Due to the objective existence of the parameter randomness of soil, the statistical properties of random variables were determined by the maximum entropy principle, and the Monte Carlo method was employed to calculate the failure probability of a pressurized tunnel. The results show that the randomness of soil parameters exerts great influence on the stability of a pressurized tunnel, which indicates that the research should be done on the topic of determination of statistical distribution for geotechnical parameters and the level of variability. For the failure probability of a pressurized tunnel under multiple failure modes, the corresponding safe retaining pressures and optimal range of safe retaining pressures are calculated by introducing allowable failure probability and minimum allowable failure probability. The results can provide practical use in the pressurized tunnel engineering.
基金Projects(51674115,51804113)supported by the National Natural Science Foundation of ChinaProject(17B095)supported by the Excellent Youth Subsidy Project of Hunan Provincial Department of Education,China
文摘The nonlinear Baker failure criterion is introduced into the upper-bound limit analysis to examine the face stability of a shallow tunnel. The tunnel face under the ultimate limit state is analyzed from the perspective of energy balance. The work rates of external forces and internal energy dissipation are calculated. An analytical solution of necessary face pressures is derived. The optimal upper-bound solution of the face pressures is obtained by optimization. The results show that the three dimensionless parameters A, T, n of nonlinear Baker failure criterion have different effects on the necessary face pressures and the pattern failure mechanisms ahead of tunnel face. A is the most important one;n takes the second place, and T is the least one. The computed necessary face pressures are nonlinearly increasing when A is reduced. Combined with the actual monitoring data of Taxia tunnel, the calculation results in this paper is verified. It is suggested that the tunnel face supports should be strengthened timely in soft rocks to prevent the occurrence of face collapse.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the NationalNatural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.
文摘Although stability charts suggested by Hoek and Bray on the basis of Mohr-Coulomb criterion are used for rock slopes,but complete and precise recognition is required for distinguishing cohesive strength and Mohr-Coulomb equivalent internal friction angle for rock mass.The paper by Lia et al.[6]is the only one that introduced rock slope charts according to Hoek-Brown failure criterion.In this paper,at first,this type of charts is introduced.Then,Mohr-Coulomb failure criterion charts[2]are compared and validated with Hoek-Brown failure criterion ones[6].Next,Bishop method utilizing Slide software is compared with Hoek-Brown failure criterion stability charts.Average standard deviation(ASD),root mean square error(RMSE)and variance account for(VAF)were used for the comparison.According to the results,because of high distribution and very low correlation among the comparisons,Hoek-Brown failure criterion charts are not efficient.
文摘The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors.
基金supported by the National Natural Science Foundation of China (Nos.50774082 and 50804046)
文摘With the increase of mining depth of mineral resources,the rock mass stress state is being more and more complex.The rock mass show different features,namely,with the increase of hydrostatic pressure,rock mass failure mode turns from brittle tension failure to structure ductile failure and its limit strength also increases.The restriction of minimal principal stress on the initiation and development of microcrack and the change of micro-unit stress state by the intermediate principal stress play a decisive role in the increase of rock mass limit strength.Based on the rock mass failure behavior law under complex stress state and the σ2-dependence on the rock mass strength,we proposed a Modified Mohr-Coulomb(M-MC) strength criterion which is smooth and convex.Finally,the M-MC criterion is validated by multiaxial test data of eight kinds of rock mass.We also compared the fitting results with Mohr-Coulomb criterion(MC).It shows that the new criterion fits the test data better than the Mohr-Coulomb criterion.So the M-MC strength criterion well reveals the rock mass bearing behavior and can be widely used in the rock mass strength analysis.The results can provide theoretical foundations for stability analysis and reinforcement design of complex underground engineering.
基金Project(51878668)supported by the National Natural Science Foundation of ChinaProjects(2017-122-058,2018-123-040)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject([2018]2815)supported by the Guizhou Provincial Department of Science and Technology Foundation,China。
文摘Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor.
文摘Sand production is a challenging issue in upstream oil and gas industry,causing operational and safety problems.Therefore,before drilling the wells,it is essential to predict and evaluate sanding onset of the wells.In this paper,new poroelastoplastic stress solutions around the perforation tunnel and tip based on the Mohr-Coulomb criterion are presented firstly.Based on the stress models,a tensile failure induced sanding onset prediction model for cased-perforated gas wells is derived.Then the analytical model is applied to field data to verify its applicability.The results from the perforation tip tensile failure induced sanding model are very close to field data.Therefore,this model is recommended for forecasting the critical conditions of sand production analysis.Such predictions are necessary for providing technical support for sand control decision-making and predicting the production condition at which sanding onset occurs.
基金Projects(51208522,51478477)supported by the National Natural Science Foundation of ChinaProject(2012122033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProject(CX2015B049)supported by the Scientific Research Innovation Project of Hunan Province,China
文摘The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis.
基金Project(200550)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(200631878557)supported by West Traffic of Science and Technology of China
文摘The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique.Equating the external work rate to the internal energy dissipation,the optimum solutions to stability factors were determined by the nonlinear programming algorithm.From the numerical results,it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion,and the nonassociated flow rule reduces to the associated flow rule.The stability factors decrease by 39.7%with nonlinear parameter varying from 1.0 to 3.0.Dilation and nonlinearity have significant effects on the slope stability factors.