By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the dis...The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.展开更多
In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the disc...In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same probl...In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same problem on a much coarser grid together with the solutions of two linear problems on a fine grid. We have shown, both theoretically and numerically, that our schemes are efficient and achieve asymptotically optimal accuracy.展开更多
The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in...The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in the Luzon Strait. The generation mechanism of the internal solitary waves in the Luzon Strait is discussed using a modulation instability. The energy gain of the modulation instability is derived based on the fully nonlinear Schr6dinger equation. The peak value of the gain is calculated under different conditions of stratification, wavelength and the initial amplitude of an internal tidal wave. The characteristics of the modulation instability in the Luzon Strait are investigated. The conditions that make the internal tidal wave evolve into an internal solitary wave in the Luzon strait are also obtained. The results show that the internal tide waves can generate the modulation instability in the Luzon Strait and that the maximum gain occur at the eastern sill of the Luzon Strait, where the internal tide waves start to break up into internal solitary trains. The magnitude and the scope of the peak gain are relevant to the stratification and the initial conditions of the internal tide waves. The numerical simulation results are consistent with the in-situ data.展开更多
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule o...In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.展开更多
We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on ...We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.展开更多
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.
基金Project supported by the National Natural Science Foundation of China (Grant No.11101191)
文摘The nonlinear Schr6dinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038).
文摘In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.
基金Acknowledgments. This work is partially supported by National Science Foundation of China (10971059), Young Scientists Foundation of the National Science Foundation of China (11101136), Hunan Provincial Natural Science Foundation of China (14JJ2114), Science and Technology Foundation of Hunan Province (2013FJ4229).
文摘In this paper, some two-grid finite element schemes are constructed for solving the nonlinear SchrSdinger equation. With these schemes, the solution of the original problem is reduced to the solution of the same problem on a much coarser grid together with the solutions of two linear problems on a fine grid. We have shown, both theoretically and numerically, that our schemes are efficient and achieve asymptotically optimal accuracy.
基金The National Natural Science Foundation of China under contract No.61171161
文摘The South China Sea (SCS) is a hot spot for oceanic internal solitary waves due to many factors, such as the complexity of the terrain environment. The internal solitary waves in the northern SCS mainly originate in the Luzon Strait. The generation mechanism of the internal solitary waves in the Luzon Strait is discussed using a modulation instability. The energy gain of the modulation instability is derived based on the fully nonlinear Schr6dinger equation. The peak value of the gain is calculated under different conditions of stratification, wavelength and the initial amplitude of an internal tidal wave. The characteristics of the modulation instability in the Luzon Strait are investigated. The conditions that make the internal tidal wave evolve into an internal solitary wave in the Luzon strait are also obtained. The results show that the internal tide waves can generate the modulation instability in the Luzon Strait and that the maximum gain occur at the eastern sill of the Luzon Strait, where the internal tide waves start to break up into internal solitary trains. The magnitude and the scope of the peak gain are relevant to the stratification and the initial conditions of the internal tide waves. The numerical simulation results are consistent with the in-situ data.
基金Supported by the National Natural Science Foundation of China under Grant No.11271210the K.C.Wong Magna Fund in Ningbo University
文摘In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
基金Supported by the Higher School Visiting Scholar Development Project under Grant No.FX2013103the Research Fund under Grant No.ZCI2XJY003+2 种基金 Research Fund for the Doctoral Program under Grant No.Z301B13519 of the Zhejiang University of Media and CommunicationsZhejiang Province Science Foundation for Youths under Grant No.LQ12F05005National Natural Science Foundation of China under Grant No.11374254
文摘We discuss the nonlinear Schr6dinger equation with variable coefficients in 21) graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.