期刊文献+
共找到482篇文章
< 1 2 25 >
每页显示 20 50 100
Prescribed Performance Tracking Control of Time-Delay Nonlinear Systems With Output Constraints 被引量:1
1
作者 Jin-Xi Zhang Kai-Di Xu Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1557-1565,共9页
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ... The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings. 展开更多
关键词 nonlinear systems output constraints prescribed performance reference tracking time delays
下载PDF
Fuzzy-Model-Based Finite Frequency Fault Detection Filtering Design for Two-Dimensional Nonlinear Systems
2
作者 Meng Wang Huaicheng Yan +1 位作者 Jianbin Qiu Wenqiang Ji 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2099-2110,共12页
This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are c... This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods. 展开更多
关键词 Fault diagnosis finite frequency specifications mixed H_(∞)/H_(-)performance two-dimensional nonlinear systems
下载PDF
A new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning
3
作者 Wendi Chen Qinglai Wei 《Journal of Automation and Intelligence》 2024年第1期34-39,共6页
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy... In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy. 展开更多
关键词 nonlinear systems Reinforcement learning Optimal control Backstepping method
下载PDF
Optimal Control of Nonlinear Systems Using Experience Inference Human-Behavior Learning
4
作者 Adolfo Perrusquía Weisi Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期90-102,共13页
Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior lear... Safety critical control is often trained in a simulated environment to mitigate risk.Subsequent migration of the biased controller requires further adjustments.In this paper,an experience inference human-behavior learning is proposed to solve the migration problem of optimal controllers applied to real-world nonlinear systems.The approach is inspired in the complementary properties that exhibits the hippocampus,the neocortex,and the striatum learning systems located in the brain.The hippocampus defines a physics informed reference model of the realworld nonlinear system for experience inference and the neocortex is the adaptive dynamic programming(ADP)or reinforcement learning(RL)algorithm that ensures optimal performance of the reference model.This optimal performance is inferred to the real-world nonlinear system by means of an adaptive neocortex/striatum control policy that forces the nonlinear system to behave as the reference model.Stability and convergence of the proposed approach is analyzed using Lyapunov stability theory.Simulation studies are carried out to verify the approach. 展开更多
关键词 Experience inference hippocampus learning system linear time-variant(LTV)systems neocortex/striatum learning systems nonlinear systems optimal control
下载PDF
Neuro-Based Higher Order Sliding Mode Control for Perturbed Nonlinear Systems
5
作者 Ahmed M.Elmogy Wael M.Elawady 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期385-400,共16页
One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty.Many researchers have been working on developing such type of controllers.One of the... One of the great concerns when tackling nonlinear systems is how to design a robust controller that is able to deal with uncertainty.Many researchers have been working on developing such type of controllers.One of the most effi-cient techniques employed to develop such controllers is sliding mode control(SMC).However,the low order SMC suffers from chattering problem which harm the actuators of the control system and thus unsuitable to be used in many practical applications.In this paper,the drawbacks of low order traditional sliding mode control(FOTSMC)are resolved by presenting a novel adaptive radial basis function neural network–based generalized rth order sliding mode control strategy for nth order uncertain nonlinear systems.The proposed solution adopts neural networks for their excellent capability in function approximation and thus used to approximate the nonlinearities and uncertainties for systems under considera-tion.The approximation errors are completely considered in the developed approach.The proposed approach can be used with any order of sliding mode and thus can be generally used with various types of applications.The global sta-bility of the proposed control approach is proved through Lyapunov stability cri-terion.The proposed approach is validated and assessed through simulations on the nonlinear inverted pendulum system with severe modeling uncertainties.The simulations results show that the proposed approach provide superior perfor-mance compared with other approaches in the literature. 展开更多
关键词 SMC nonlinear systems PID Lyapunov stability radial basis function neural networks
下载PDF
Simplified Method of Stability Analysis of Nonlinear Systems without Using of Lyapunov Concept
6
作者 Tarek Benmiloud 《Journal of Applied Mathematics and Physics》 2023年第4期1049-1060,共12页
In this paper a new simplified method of stability study of dynamical nonlinear systems is proposed as an alternative to using Lyapunov’s method. Like the Lyapunov theorem, the new concept describes a sufficient cond... In this paper a new simplified method of stability study of dynamical nonlinear systems is proposed as an alternative to using Lyapunov’s method. Like the Lyapunov theorem, the new concept describes a sufficient condition for the systems to be globally stable. The proposed method is based on the assumption that, not only the state matrix contains information on the stability of the systems, but also the eigenvectors. So, first we will write the model of nonlinear systems in the state-space representation, then we use the eigenvectors of the state matrix as system stability indicators. 展开更多
关键词 Stability Criterion of nonlinear systems EIGENVECTORS State-Space Representation Lyapunov Method
下载PDF
Finite-Time H Control of Switched Nonlinear Systems under State-Dependent Switching
7
作者 Xiaoyue Zhang Yao Wang 《Journal of Applied Mathematics and Physics》 2023年第7期2053-2068,共16页
This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dep... This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions. 展开更多
关键词 Finite-Time H Control Switched nonlinear systems Multiple Lyapunov-Like Functions State-Dependent Switching
下载PDF
Adaptive Robust Control for a Class of Uncertain MIMO Non-affine Nonlinear Systems 被引量:9
8
作者 Longsheng Chen Qi Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期105-112,共8页
In this paper, the adaptive robust tracking control scheme is proposed for a class of multi-input and multi-output (MIMO) non-affine systems with uncertain structure and parameters, unknown control direction and unkno... In this paper, the adaptive robust tracking control scheme is proposed for a class of multi-input and multi-output (MIMO) non-affine systems with uncertain structure and parameters, unknown control direction and unknown external disturbance based on backstepping technique. The MIMO non-affine system is first transformed into a time-varying system with strict feedback structure using the mean value theorem, and then the bounded time-varying parameters are estimated by adaptive algorithms with projection. To handle the possible 'controller singularity' problem caused by unknown control direction, a Nussbaum function is employed, and the dynamic surface control (DSC) method is applied to solve the problem of 'explosion of complexity' in backstepping control. It is proved that the proposed control scheme can guarantee that all signals of the closed-loop system are bounded through Lyapunov stability theorem and decoupled backstepping method. Simulation results are presented to illustrate the effectiveness of the proposed control scheme. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive algorithms BACKSTEPPING Closed loop control systems Closed loop systems FUNCTIONS nonlinear systems Robust control Time varying systems Uncertainty analysis
下载PDF
Observer-based Adaptive Optimal Control for Unknown Singularly Perturbed Nonlinear Systems With Input Constraints 被引量:7
9
作者 Zhijun Fu Wenfang Xie +1 位作者 Subhash Rakheja Jing Na 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期48-57,共10页
This paper introduces an observer-based adaptive optimal control method for unknown singularly perturbed nonlinear systems with input constraints. First, a multi-Time scales dynamic neural network MTSDNN observer with... This paper introduces an observer-based adaptive optimal control method for unknown singularly perturbed nonlinear systems with input constraints. First, a multi-Time scales dynamic neural network MTSDNN observer with a novel updating law derived from a properly designed Lyapunov function is proposed to estimate the system states. Then, an adaptive learning rule driven by the critic NN weight error is presented for the critic NN, which is used to approximate the optimal cost function. Finally, the optimal control action is calculated by online solving the Hamilton-Jacobi-Bellman HJB equation associated with the MTSDNN observer and critic NN. The stability of the overall closed-loop system consisting of the MTSDNN observer, the critic NN and the optimal control action is proved. The proposed observer-based optimal control approach has an essential advantage that the system dynamics are not needed for implementation, and only the measured input U+002F output data is needed. Moreover, the proposed optimal control design takes the input constraints into consideration and thus can overcome the restriction of actuator saturation. Simulation results are presented to confirm the validity of the investigated approach. © 2014 Chinese Association of Automation. 展开更多
关键词 Closed loop systems Cost functions Lyapunov functions Neural networks nonlinear systems Optimal control systems Perturbation techniques
下载PDF
Adaptive H~∞ Control of Nonlinear Systems with Neural Networks 被引量:6
10
作者 姜长生 陈谋 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期36-41,共6页
The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ cont... The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ controller. The RBF neural networks are used to approximate the nonlinear functions and the approximation errors of the neural networks are used in the adaptive law to improve the performance of the systems. The H ∞ controller is designed for attenuating the influence of external disturbance and neural network approximation errors. The controller can not only guarantee stability of the nonlinear systems, but also attenuate the effect of the external disturbance and neural networks approximation errors to reach performance indexes. Finally, an example validates the effectiveness of this method. 展开更多
关键词 neural networks nonlinear systems adaptive control H control
下载PDF
BLOCK DIAGONAL FORM AND BLOCK DIAGONAL CONTROLLER OF NONLINEAR SYSTEMS 被引量:5
11
作者 Zhao Guorong Zhang Fuen(Dept. of Automatic Control, Harbin Institute of Technology, Harbin, China, 150001)Gu Wenjing(Naval Aeronautical Engineering Academy, Yantai, Shantong, China, 264001) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第1期51-57,共7页
A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class... A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class of nonlinear system can be simply re-alized. The result of design has been proved by mathematical simulation of a certain anti-ship missile. 展开更多
关键词 feedback LINEARIZATION nonlinear systems flight control controllers
下载PDF
Global robust optimal sliding mode control for uncertain affine nonlinear systems 被引量:5
12
作者 Pang Haiping Chen Xia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期838-843,共6页
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy... The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR. 展开更多
关键词 robust control optimal control sliding mode control nonlinear systems uncertain systems exact linearization.
下载PDF
Parity Relation Based Fault Estimation for Nonlinear Systems: An LMI Approach 被引量:6
13
作者 Sing Kiong Nguang Ping Zhang Steven X. Ding 《International Journal of Automation and computing》 EI 2007年第2期164-168,共5页
This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is for... This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques. 展开更多
关键词 Fuzzy systems nonlinear systems fault identification fault detection fault diagnosis.
下载PDF
Integral terminal sliding mode control for nonlinear systems 被引量:6
14
作者 GUO Jianguo LIU Yuchao ZHOU Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期571-579,共9页
This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented... This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties. 展开更多
关键词 terminal sliding mode(TSM) finite-time convergence mismatched disturbance Lyapunov stability nonlinear systems
下载PDF
Adaptive control using interval Type-2 fuzzy logic for uncertain nonlinear systems 被引量:5
15
作者 周海波 应浩 段吉安 《Journal of Central South University》 SCIE EI CAS 2011年第3期760-766,共7页
A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, th... A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure. 展开更多
关键词 Type-2 fuzzy systems adaptive fuzzy control nonlinear systems stability
下载PDF
Construction of Control Lyapunov Functions for a Class of Nonlinear Systems 被引量:5
16
作者 CAI Xiu-Shan HAN Zheng-Zhi WANG Xiao-Dong 《自动化学报》 EI CSCD 北大核心 2006年第5期796-799,共4页
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematica... The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established. 展开更多
关键词 nonlinear systems control Lyapunov functions semiglobal stabilization zero dynamics.
下载PDF
Robust adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems based on backstepping technique 被引量:5
17
作者 Min WANG Xiuying WANG +1 位作者 Bing CHEN Shaocheng TONG 《控制理论与应用(英文版)》 EI 2007年第3期317-322,共6页
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlin... In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme. 展开更多
关键词 nonlinear systems Fuzzy control Robust adaptive control Backstepping technique
下载PDF
Robust Tracking Control of Uncertain MIMO Nonlinear Systems with Application to UAVs 被引量:4
18
作者 Yanlong Zhou Mou Chen Changsheng Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期25-32,共8页
In this paper, we consider the robust adaptive tracking control of uncertain multi-input and multi-output (MIMO) nonlinear systems with input saturation and unknown external disturbance. The nonlinear disturbance obse... In this paper, we consider the robust adaptive tracking control of uncertain multi-input and multi-output (MIMO) nonlinear systems with input saturation and unknown external disturbance. The nonlinear disturbance observer (NDO) is employed to tackle the system uncertainty as well as the external disturbance. To handle the input saturation, an auxiliary system is constructed as a saturation compensator. By using the backstepping technique and the dynamic surface method, a robust adaptive tracking control scheme is developed. The closed-loop system is proved to be uniformly ultimately bounded thorough Lyapunov stability analysis. Simulation results with application to an unmanned aerial vehicle (UAV) demonstrate the effectiveness of the proposed robust control scheme. © 2014 Chinese Association of Automation. 展开更多
关键词 Aircraft control AIRSHIPS BACKSTEPPING Closed loop control systems Closed loop systems nonlinear systems Robust control Unmanned aerial vehicles (UAV) Unmanned vehicles
下载PDF
Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics 被引量:4
19
作者 Ming-Zhe Hou Ai-Guo Wu Guang-Ren Duan 《International Journal of Automation and computing》 EI 2008年第3期307-312,共6页
The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condi... The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method. 展开更多
关键词 nonlinear systems global stabilization output feedback input unmodeled dynamics high gain
下载PDF
Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems 被引量:4
20
作者 Xiao-Yuan Luo Zhi-Hao Zhu Xin-Ping Guan 《International Journal of Automation and computing》 EI 2009年第4期385-390,共6页
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct... In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper. 展开更多
关键词 Uncertain nonlinear systems fuzzy logic system dynamic surface control backstepping design
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部