The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affm...A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affme nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control...Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control. The variable structure controllaw m inim izes the quadratic index ofa predic- tive sliding m ode, w hich contains thecostfunction ofcontrolpreventing the controleffectfrom satu- ration for in m ostpracticalim plem entation the controlinputs are bounded by physicalconstraints and energy constraints. According to the im m easurable states, the variable structure observer for nonlin- ear system sisadapted. The variablestructure system m ethod isaptto therealization ofobserverw ith variable param eters and uncertainty. The proofshow s thatthe states ofthe observer asym ptotically convergence to the realstates ofthe system although itisofuncertainty and nonlinear term s. Final- ly, the digitalsim ulation results prove the effectiveness ofthe proposed m ethod.展开更多
Presents the coordinated controls of nonlinear variable structure with an equivalent control term designed for turbo generators following the theory of nonlinear variable structure control, which integrates the valve ...Presents the coordinated controls of nonlinear variable structure with an equivalent control term designed for turbo generators following the theory of nonlinear variable structure control, which integrates the valve control with the excitation control and reduce the problem of high frequency shiver with conventional variable structure control in addition to a simplified design, and concludes from simulation results that the use of this control can improve the transient of the system.展开更多
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving con...A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.展开更多
In this paper, a neural-network-based variable structure control scheme is presented for a class of nonlinear systems with a general low triangular structure. The proposed variable structure controller is proved to be...In this paper, a neural-network-based variable structure control scheme is presented for a class of nonlinear systems with a general low triangular structure. The proposed variable structure controller is proved to be Cl, thus can be applied for backstepping design, which has extended the scope of previous nonlinear systems in the form of strict-feedback and pure-feedback. With the help of neural network approximator, H-∞ performance analysis of stability is given. The effectiveness of proposed control law is verified via simulation.展开更多
A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between...A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between the outputs of the reference model and the controlled plant is derived. Then, by using the variable structrue control method, an algorithm of variable structure model reference adaptive control is deduced on the basis of a new concept of reaching law. The definition of the SISO system is introduced into the MIMO nonlinear system. Finally, as an example, a pendulum nonlinear control system is simulated to demonstrated the effectiveness of the method. The results show that the method has some advantages: the design is simple, intuitive and easy to be realized in engineering. Besides, it is of practical significance for the synthesis of nonlinear control systems.展开更多
The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boun...The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boundary layer is built near the ideal switch surface which can eliminate chattering in the switch surface. The proposed control method with L2 gain can guarantee exponential stability of a system state with no parameter uncertainty and exter- nal disturbance, while it can guarantee state ultimate boundness if parameter uncertainty and external disturbance exist. In the proposed design method, stability of the closed-loop system is analyzed by adopting the Lyapurtov func- tion approach. Finally the numerical simulation results show that the proposed smooth variable structure controller has good pelformance without chattering in the switch surface.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states f...This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states from the equivalent point, a saturating property with the variable width is adopted. The method not only reduces the chattering of the control signal but also decrees the steady-state error.展开更多
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive f...An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
With a T-S fuzzy dynamic model approximating to a non-linear system,the nonlinear system can be decomposed into some local linear models.A variable structure controller based on Lyapunov theories is designed to guaran...With a T-S fuzzy dynamic model approximating to a non-linear system,the nonlinear system can be decomposed into some local linear models.A variable structure controller based on Lyapunov theories is designed to guarantee the global stability of the T-S fuzzy model.The controlling problems of a nonlinear system can be solved by means of consisting of linear system variable structure control and fuzzy control.The validity of the control method based on the simulating result of two kinds of chaotic systems is shown here.展开更多
The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structur...The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.展开更多
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
文摘A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affme nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
文摘Nonlinear sliding m ode predictive controller is designed for a class of nonlinear system w ith unm odeled dynam ic characteristics and nonlinear term . The m ethod is based on nonlinear opti- m alpredictive control. The variable structure controllaw m inim izes the quadratic index ofa predic- tive sliding m ode, w hich contains thecostfunction ofcontrolpreventing the controleffectfrom satu- ration for in m ostpracticalim plem entation the controlinputs are bounded by physicalconstraints and energy constraints. According to the im m easurable states, the variable structure observer for nonlin- ear system sisadapted. The variablestructure system m ethod isaptto therealization ofobserverw ith variable param eters and uncertainty. The proofshow s thatthe states ofthe observer asym ptotically convergence to the realstates ofthe system although itisofuncertainty and nonlinear term s. Final- ly, the digitalsim ulation results prove the effectiveness ofthe proposed m ethod.
文摘Presents the coordinated controls of nonlinear variable structure with an equivalent control term designed for turbo generators following the theory of nonlinear variable structure control, which integrates the valve control with the excitation control and reduce the problem of high frequency shiver with conventional variable structure control in addition to a simplified design, and concludes from simulation results that the use of this control can improve the transient of the system.
文摘A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.
基金Shanghai Leading Academic Discipline Project(B504)
文摘In this paper, a neural-network-based variable structure control scheme is presented for a class of nonlinear systems with a general low triangular structure. The proposed variable structure controller is proved to be Cl, thus can be applied for backstepping design, which has extended the scope of previous nonlinear systems in the form of strict-feedback and pure-feedback. With the help of neural network approximator, H-∞ performance analysis of stability is given. The effectiveness of proposed control law is verified via simulation.
文摘A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between the outputs of the reference model and the controlled plant is derived. Then, by using the variable structrue control method, an algorithm of variable structure model reference adaptive control is deduced on the basis of a new concept of reaching law. The definition of the SISO system is introduced into the MIMO nonlinear system. Finally, as an example, a pendulum nonlinear control system is simulated to demonstrated the effectiveness of the method. The results show that the method has some advantages: the design is simple, intuitive and easy to be realized in engineering. Besides, it is of practical significance for the synthesis of nonlinear control systems.
文摘The robust stabilization problem for a family of nonlinear plants with mismatch uncertainties is addressed, and a solution is presented based on variable structure control theory and H∞ control theory. A kind of boundary layer is built near the ideal switch surface which can eliminate chattering in the switch surface. The proposed control method with L2 gain can guarantee exponential stability of a system state with no parameter uncertainty and exter- nal disturbance, while it can guarantee state ultimate boundness if parameter uncertainty and external disturbance exist. In the proposed design method, stability of the closed-loop system is analyzed by adopting the Lyapurtov func- tion approach. Finally the numerical simulation results show that the proposed smooth variable structure controller has good pelformance without chattering in the switch surface.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
文摘This paper presents a new method of smoothing control signal in control system of variable structure. Using the relationship between the gain of nonlinear term in the control signal and distance of the system states from the equivalent point, a saturating property with the variable width is adopted. The method not only reduces the chattering of the control signal but also decrees the steady-state error.
基金co-supported by National Natural Science Foundation of China (Nos. 91116017, 60974106 and 11102080)Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ10-04)
文摘An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.
文摘With a T-S fuzzy dynamic model approximating to a non-linear system,the nonlinear system can be decomposed into some local linear models.A variable structure controller based on Lyapunov theories is designed to guarantee the global stability of the T-S fuzzy model.The controlling problems of a nonlinear system can be solved by means of consisting of linear system variable structure control and fuzzy control.The validity of the control method based on the simulating result of two kinds of chaotic systems is shown here.
文摘The mathematical model of a transport aircraft would be subjected to a sudden change when heavy cargo is dropped off in airdropping, which exerts serious influences upon the safety of the aircraft. A variable structure controller is specially designed for handling the airdrop process. The nonlinear system is linearized by input-output feedback linearization using differential geometry theories. On this basis, an inner loop system for velocity and attitude tracking control is designed by using the exponentially approaching rule of the variable structure theory. The whole flight control system is integrated with the outer loop flight altitude control. Digital simulation evidences the applicability of the system to potentially catastrophic course in airdropping heavy cargo and provides robustness against system parameter perturbation.