The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie po...In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.展开更多
The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentrati...The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.展开更多
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as...In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero.展开更多
In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are stud...In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.展开更多
In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the...In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems.展开更多
A new method is used to obtain the anomalous dimension in the solution of the nonlinear diffusion equation.The result is the same as that in the renormalization group (RG) approach.It gives us an insight into the anom...A new method is used to obtain the anomalous dimension in the solution of the nonlinear diffusion equation.The result is the same as that in the renormalization group (RG) approach.It gives us an insight into the anomalous dimension in the solution of the nonlinear diffusion equation in the RG approach.Based on this discussion,we can see anomalous dimension appears naturally in this system.展开更多
In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth...In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.展开更多
A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solu...A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.展开更多
Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (...Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.展开更多
A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear ...A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.展开更多
The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution...The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.展开更多
In this article,under suitable conditions on the internal term f(·)and the bound-ary nonlinear term g(·),we prove blow-up results for a class of nonclassical diffusion equations with nonlinear boundary condi...In this article,under suitable conditions on the internal term f(·)and the bound-ary nonlinear term g(·),we prove blow-up results for a class of nonclassical diffusion equations with nonlinear boundary condition.展开更多
A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the con...A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model.展开更多
In this paper, we study properties of solutions to doubly nonlinear reaction-diffusion systems with variable density and source. We demonstrate the possibilities of the self-similar approach to studying the qualitativ...In this paper, we study properties of solutions to doubly nonlinear reaction-diffusion systems with variable density and source. We demonstrate the possibilities of the self-similar approach to studying the qualitative properties of solutions of such reaction-diffusion systems. We also study the finite speed of propagation (FSP) properties of solutions, an asymptotic behavior of the compactly supported solutions and free boundary asymptotic solutions in quick diffusive and critical cases.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
In the present work we study the global solvability of the Kolmogorov-Fisher type biological population task with double nonlinear diffusion and qualitative properties of the solution of the task based on the self-sim...In the present work we study the global solvability of the Kolmogorov-Fisher type biological population task with double nonlinear diffusion and qualitative properties of the solution of the task based on the self-similar analysis. In additional, in this paper we consider the model of two competing population with dual nonlinear cross-diffusion.展开更多
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10671156the Program for New CenturyExcellent Talents in Universities under Grant No.NCET-04-0968
文摘In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10672143 and 60575055)
文摘The Lie symmetries and conserved quantities of a two-dimensional nonlinear diffusion equation ot concentration are considered. Based on the invariance of the two-dimensional nonlinear diffusion equation of concentration under the infinitesimal transformation with respect to the generalized coordinates and time, the determining equations of Lie symmetries are presented. The Lie groups of transformation and infinitesimal generators of this equation are obtained. The conserved quantities associated with the nonlinear diffusion equation of concentration are derived by integrating the characteristic equations. Also, the solutions of the two-dimensional nonlinear diffusion equation of concentration can be obtained.
基金Supported by the Natural Science Foundation of China(11001095 and 11001096)
文摘In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameter α goes to zero.
基金Supported by the NNSF of China(40676016,10471039)the National Key Project for Basics Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004).
文摘In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.
文摘In this paper, a nearly analytic discretization method for one-dimensional linear unsteady convection-dominated diffusion equations and viscous Burgers’ equation as one of the nonlinear equation is considered. In the case of linear equations, we find the local truncation error of the scheme is O(τ 2 + h4) and consider the stability analysis of the method on the basis of the classical von Neumann’s theory. In addition, the nearly analytic discretization method for the one-dimensional viscous Burgers’ equation is also constructed. The numerical experiments are performed for several benchmark problems presented in some literatures to illustrate the theoretical results. Theoretical and numerical results show that our method is to be higher accurate and nonoscillatory and might be helpful particularly in computations for the unsteady convection-dominated diffusion problems.
文摘A new method is used to obtain the anomalous dimension in the solution of the nonlinear diffusion equation.The result is the same as that in the renormalization group (RG) approach.It gives us an insight into the anomalous dimension in the solution of the nonlinear diffusion equation in the RG approach.Based on this discussion,we can see anomalous dimension appears naturally in this system.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042the Natural Science Foundation of Shaanxi Province under Grant No.2003A03
文摘In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371098 and 10447007 and the Program for New Century Excellent Talents in Universities (NCET)
文摘A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.
文摘Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.
基金supported by the Southwestern University of Finance and Economics (SWUFE) Key Subject Construction Item Funds of the 211 Project (Grant No 211D3T06)
文摘A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.
基金Supported by the National Natural Scince Foundation of China( 1 0 0 71 0 4 8) ,and the"Hundred TalentsProject"of Chinese Academy of Sciences
文摘The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.
基金Supported by the research funding of higher education of Gansu province project[2018B-075]。
文摘In this article,under suitable conditions on the internal term f(·)and the bound-ary nonlinear term g(·),we prove blow-up results for a class of nonclassical diffusion equations with nonlinear boundary condition.
基金Partially supported by National Natural Science Foundation and the Shanghai Qimingxing grant. # 97QA14040
文摘A modified version of the Cotte, Lions, Morel and Coil theory for image selective smoothing and edge detection is proposed. Comparing with their model, the most important advantage of this modification is that the convolution with Gaussian processes in the filtering process is replaced by solving an initial-boundary value problem for the heat equation, which simplifies the numerical scheme to some extent. Numerical experiments on natural images are presented for this model.
文摘In this paper, we study properties of solutions to doubly nonlinear reaction-diffusion systems with variable density and source. We demonstrate the possibilities of the self-similar approach to studying the qualitative properties of solutions of such reaction-diffusion systems. We also study the finite speed of propagation (FSP) properties of solutions, an asymptotic behavior of the compactly supported solutions and free boundary asymptotic solutions in quick diffusive and critical cases.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
文摘In the present work we study the global solvability of the Kolmogorov-Fisher type biological population task with double nonlinear diffusion and qualitative properties of the solution of the task based on the self-similar analysis. In additional, in this paper we consider the model of two competing population with dual nonlinear cross-diffusion.