This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonli...This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.展开更多
We construct various novel exact solutions of two coupled dynamical nonlinear Schrōdinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrōdinger equations with time-and space-...We construct various novel exact solutions of two coupled dynamical nonlinear Schrōdinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrōdinger equations with time-and space-dependent potentials, nonlinearities, and gain or loss to the coupled dynamical nonlinear Schrrdinger equations. Some special types of non-travelling wave solutions, such as periodic, resonant, and quasiperiodically oscillating solitons, are used to exhibit the wave propagations by choosing some arbitrary functions. Our results show that the number of the localized wave of one component is always twice that of the other one. In addition, the stability analysis of the solutions is discussed numerically.展开更多
A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic eq...A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.展开更多
Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a cou...Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.展开更多
In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimens...In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.展开更多
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
文摘This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11275072,11075055,and 11271211)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120076110024)+3 种基金the Innovative Research Team Program of the National Natural Science Foundation of China(Grant No.61021004)the Shanghai Leading Academic Discipline Project,China(Grant No.B412)the National High Technology Research and Development Program of China(Grant No.2011AA010101)the Shanghai Knowledge Service Platform for Trustworthy Internet of Things,China(Grant No.ZF1213)
文摘We construct various novel exact solutions of two coupled dynamical nonlinear Schrōdinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrōdinger equations with time-and space-dependent potentials, nonlinearities, and gain or loss to the coupled dynamical nonlinear Schrrdinger equations. Some special types of non-travelling wave solutions, such as periodic, resonant, and quasiperiodically oscillating solitons, are used to exhibit the wave propagations by choosing some arbitrary functions. Our results show that the number of the localized wave of one component is always twice that of the other one. In addition, the stability analysis of the solutions is discussed numerically.
基金supported by the National Key Research and Development Program of China(No.2016YFB0200703)
文摘A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971104)the Basic Research Foundation of Sichuan Province,China (Grant No. 2006J013-011)+1 种基金the Outstanding Young Researchers Foundation of Sichuan Province,China (Grant No. 09ZQ026-091)the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20090184110008)
文摘Based on a coupled nonlinear dynamic filter (NDF), a novel chaotic stream cipher is presented in this paper and employed to protect palmprint templates. The chaotic pseudorandom bit generator (PRBG) based on a coupled NDF, which is constructed in an inverse flow, can generate multiple bits at one iteration and satisfy the security requirement of cipher design. Then, the stream cipher is employed to generate cancelable competitive code palmprint biometrics for template protection. The proposed cancelable palmprint authentication system depends on two factors: the palmprint biometric and the password/token. Therefore, the system provides high-confidence and also protects the user's privacy. The experimental results of verification on the Hong Kong PolyU Palmprint Database show that the proposed approach has a large template re-issuance ability and the equal error rate can achieve 0.02%. The performance of the palmprint template protection scheme proves the good practicability and security of the proposed stream cipher.
基金supported by the National Natural Science Foundation of China under Grant No.11688101
文摘In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.