期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS
1
作者 YAN Zhen-ya(闫振亚) +1 位作者 ZHANG Hong-qing(张鸿庆) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第8期925-934,共10页
The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions conta... The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations. 展开更多
关键词 nonlinear evolution equations improved homogeneous balance method exact analytical solution solitary wave solution rational solution
下载PDF
A New Generalization of Extended Tanh—Function Method for Solving Nonlinear Evolution Equations 被引量:15
2
作者 ZHENGXue-Dong CHENYong LIBiao ZHANGHong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期647-652,共6页
Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati... Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions. 展开更多
关键词 nonlinear evolution equations exact solutions symbolic computation Riccati equation
下载PDF
Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous: Mathematical Discussions and Its Applications 被引量:8
3
作者 LIU Cheng-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第2期219-223,共5页
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa... A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed. 展开更多
关键词 trial equation method solvable equation nonlinear evolution equation exact solution
下载PDF
Applications of Computer Algebra in Solving Nonlinear Evolution Equations 被引量:9
4
作者 XIEFu-Ding GAOXiao-Shan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期353-356,共4页
With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a res... With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found. 展开更多
关键词 computer algebra travelling wave solution nonlinear evolution equation
下载PDF
Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation 被引量:4
5
作者 XUGui-Qiong LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第1期39-43,共5页
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbit... A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbitrariness of the manifold in Painlevé analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here. 展开更多
关键词 Painleve analysis RANK travelling wave solution nonlinear evolution equation
下载PDF
TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION 被引量:4
6
作者 Fan Engui E mail:faneg@fudan.edu.cnInstituteofMath.,FudanUniv.,Shanghai200433 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第2期149-155,共7页
A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the pa... A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation. 展开更多
关键词 nonlinear evolution equation travelling wave solution symbolic computation.
下载PDF
Constructing infinite sequence exact solutions of nonlinear evolution equations 被引量:3
7
作者 套格图桑 那仁满都拉 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期23-33,共11页
To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are pr... To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are presented. Based on this, the generalized pentavalent KdV equation and the breaking soliton equation are chosen as applicable examples and infinite sequence smooth soliton solutions, infinite sequence peak solitary wave solutions and infinite sequence compact soliton solutions are obtained with the help of symbolic computation system Mathematica. The method is of significance to search for infinite sequence new exact solutions to other nonlinear evolution equations. 展开更多
关键词 first kind of elliptic function Backlund transformation nonlinear evolution equation new infinite sequence exact solutions
下载PDF
Extension of Variable Separable Solutions for Nonlinear Evolution Equations 被引量:3
8
作者 ZHANG Shun-Li ZHU Xiao-Ning +1 位作者 WANG Yong-Mao LOU Sen-Yue 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第4期829-832,共4页
We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional sep... We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations. 展开更多
关键词 nonlinear evolution equation variable separable solution generalized conditional symmetry
下载PDF
A more general form of lump solution,lumpoff,and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation 被引量:2
9
作者 Panfeng Zheng Man Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期147-156,共10页
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ... In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution. 展开更多
关键词 a reduced(3 + 1)-dimensional nonlinear evolution equation more general form of lump solution soliton induced by lump lumpoff and instanton/rogue wave solutions
下载PDF
Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations 被引量:2
10
作者 WANG Mei-Jiao WANG Qi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期785-789,共5页
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const... In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations. 展开更多
关键词 extended Riccati equation rational expansion method nonlinear stochastic evolution equation stochastic mKdV equation soliton-like solutions
下载PDF
A Generalized Hirota Ansatz to Obtain Soliton-Like Solutions for a (3+l)-Dimensional Nonlinear Evolution Equation 被引量:1
11
作者 吴建平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期297-300,共4页
Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theres... Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived. 展开更多
关键词 (3+1)-dimensional nonlinear evolution equation bilinear method generalized Hirota ansatz exponential type functions soliton-like solutions
下载PDF
Computational Stability of the Explicit Difference Schemes of the Forced Dissipative Nonlinear Evolution Equations 被引量:1
12
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第3期413-417,共5页
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ... The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001). 展开更多
关键词 Computational quasi-stability Computational stability Forced dissipative nonlinear evolution equation Explicit difference scheme
下载PDF
Generalized Dromion Structures of New(2+1)—Dimensional Nonlinear Evolution Equation 被引量:1
13
作者 ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第3期267-270,共4页
We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this... We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released. 展开更多
关键词 (2+1) dimensions nonlinear evolution equation SOLITON DROMION
下载PDF
TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS 被引量:1
14
作者 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期522-529,共8页
A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0_th order Taylor expansion method; while t... A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0_th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1_st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example, namely, the two_dimensional Navier_Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution. 展开更多
关键词 nonlinear evolution equation Navier_Stokes equation Taylor expansion method convergence rate
下载PDF
Variable Separation for(1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives 被引量:1
15
作者 WANG Peng-Zhou ZHANG Shun-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期797-802,共6页
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de... We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples. 展开更多
关键词 (1 1)-dimensional nonlinear evolution equations variable separation generalized conditional symmetry derivative-dependent functional separable solution
下载PDF
The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations 被引量:1
16
作者 林万涛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第2期277-282,共6页
For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given. Based on numer... For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given. Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values. 展开更多
关键词 nonlinear evolution equation nonconservative scheme initial value
下载PDF
The Impacts of Initial Perturbations on the Computational Stability of Nonlinear Evolution Equations 被引量:1
17
作者 WU Li-Fei LIN Wan-Tao YANG Xiao-Zhong 《Atmospheric and Oceanic Science Letters》 2011年第5期293-297,共5页
The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysi... The impacts of initial perturbations on the computational stability of nonlinear evolution equations for non-conservative difference schemes and non-periodic boundary conditions are studied through theoretical analysis and numerical experiments for the case of onedimensional equations.The sensitivity of the difference scheme to initial values is further analyzed.The results show that the computational stability primarily depends on the form of the initial values if the difference scheme and boundary conditions are determined.Thus,the computational stability is sensitive to the initial perturbations. 展开更多
关键词 nonlinear evolution equation initial perturbations computational stability initial values
下载PDF
Construction of Explicit Quasi-complete Square Conservative Difference Schemes of Forced Dissipative Nonlinear Evolution Equations 被引量:1
18
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期604-612,共2页
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos... Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated. 展开更多
关键词 Forced dissipative nonlinear evolution equation Explicit quasi-complete square conservative difference scheme Computational stability
下载PDF
A FRACTIONAL NONLINEAR EVOLUTIONARY DELAY SYSTEM DRIVEN BY A HEMI-VARIATIONAL INEQUALITY IN BANACH SPACES 被引量:1
19
作者 Yunhua WENG Xuesong LI Nanjing HUANG 《Acta Mathematica Scientia》 SCIE CSCD 2021年第1期187-206,共20页
This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measur... This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results. 展开更多
关键词 fractional differential variational inequality fractional nonlinear delay evolution equation hemi-variational inequality condensing map KKM theorem fixed point theorem
下载PDF
Controllability of Nonlinear Neutral Evolution Equations with Nonlocal Conditions 被引量:1
20
作者 刘明姬 吕悦 吕显瑞 《Northeastern Mathematical Journal》 CSCD 2007年第2期115-122,共8页
In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
关键词 nonlocal condition nonlinear neutral evolution equation mild solution Krasnoselski-Schaefer fixed point
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部