This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality ...This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.展开更多
This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time...This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q ...The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].展开更多
This article first gives a new class of integral inequalities. Then, as an application, the nonlinear neutral differential system with multiple delays is considered, and the trivial solution of the nonlinear neutral s...This article first gives a new class of integral inequalities. Then, as an application, the nonlinear neutral differential system with multiple delays is considered, and the trivial solution of the nonlinear neutral system with multiple delays is obtained. Uniform asymptotic Lipschitz stability. Obviously, the above system is a generalization of the traditional differential system. The purpose of this paper is to study the dual stability of neutral differential equations with delays, including equal asymptotically Lipschitz stability and uniformly asymptotic Lipschitz stability. The author uses the method of integral inequality to establish a double stability criterion. As a result, the local stability of differential equations is widely used in theory and practice, such as dynamic systems and control systems.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay di...By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.展开更多
By Lyapunov functional method, sufficient conditions for the asymptotic stability of a class of neutral-type systems are discussed in this paper. This work extends some results on the stability of neutral-type systems...By Lyapunov functional method, sufficient conditions for the asymptotic stability of a class of neutral-type systems are discussed in this paper. This work extends some results on the stability of neutral-type systems in the previous papers. Several numerical examples are listed in the end of this paper to confirm our results.展开更多
Consider the second order nonlinear neutral difference equationThe sufficient conditions are established for the oscillation and asymptotic behavior of the solutions of this equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
基金supported by Natural Science Foundation of Jiangsu Province of China(No.BK2007016)Scientific Research and Development Program of the Higher Education Institutions of Shandong Province of China(No.J09LG58)
文摘This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
文摘In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
文摘The aim of this paper is to study the asymptotic behavior of the oscillatory solutions of forced nonlinear neutral equations of the form[x(t)-∑mi=1p i(t)x(t-τ i)]′+∑nj=1q j(t)f(x(t-σ j))=r(t),t≥t 0,where p i,q j,r∈C([t 0,∞),R),τ i,σ j≥0,i=1,2,…,m,j=1,2,…,n,f∈C(R,R),xf(x)>0 for x≠0. The results obtained here extend and improve some of the results of Ladas and Sficas [3] and J.R.Yan [5].
文摘This article first gives a new class of integral inequalities. Then, as an application, the nonlinear neutral differential system with multiple delays is considered, and the trivial solution of the nonlinear neutral system with multiple delays is obtained. Uniform asymptotic Lipschitz stability. Obviously, the above system is a generalization of the traditional differential system. The purpose of this paper is to study the dual stability of neutral differential equations with delays, including equal asymptotically Lipschitz stability and uniformly asymptotic Lipschitz stability. The author uses the method of integral inequality to establish a double stability criterion. As a result, the local stability of differential equations is widely used in theory and practice, such as dynamic systems and control systems.
基金Inner Mongolia University 2020 undergraduate teaching reform research and construction project-NDJG2094。
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金This work is supported by the National Natural Sciences Foundation of China under Grant 10361006the Natural Sciences Foundation of Yunnan Province under Grant 2003A0001MYouth Natural Sciences Foundation of Yunnan University under Grant 2003Q032C and Sciences Foundation of Yunnan Educational Community under Grant 04Y239A.
文摘By using Banach contraction principle, we obtain the global results (with respect to ||A||≠1) on the sufficient conditions for the existence of nonoscillatory solutions to a system of nonlinear neutral delay difference equations with matrix coefficients.
文摘By Lyapunov functional method, sufficient conditions for the asymptotic stability of a class of neutral-type systems are discussed in this paper. This work extends some results on the stability of neutral-type systems in the previous papers. Several numerical examples are listed in the end of this paper to confirm our results.
文摘Consider the second order nonlinear neutral difference equationThe sufficient conditions are established for the oscillation and asymptotic behavior of the solutions of this equation.