The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a pi...The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.展开更多
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ...Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.展开更多
Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments.The energy extraction efficiency depends highly on the interface circuit,and shoul...Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments.The energy extraction efficiency depends highly on the interface circuit,and should be highly improved to meet the power requirements.The nonlinear interface circuits in discrete components have been extensively explored and developed with the advantages of easy implementation,stable operation,high efficiency,and low cost.This paper reviews the state-of-the-art progress of nonlinear piezoelectric energy harvesting interface circuits in discrete components.First,the working principles and the advantages/disadvantages of four classical interface circuits are described.Then,the improved circuits based on the four typical circuits and other types of circuits are introduced in detail,and the advantages/disadvantages,output power,efficiency,energy consumption,and practicability of these circuits are analyzed.Finally,the future development trends of nonlinear piezoelectric energy harvesting circuits,e.g.,self-powered extraction,low-power consumption,and broadband characteristic,are predicted.展开更多
The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder ...The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder is studied with considering the in-plane extension incidental to the large defection. The boundary electric charges generated from two deformation modes, flexure and in-plane extension, were distinguished with each other because the charge corresponding to the latter mode produces no contribution to the output current. Numerical results on output powers show that there are multi- valuedness and jump behaviors.展开更多
The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into a...The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.展开更多
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der...Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.展开更多
Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g....Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.,turbines and watermills),the micro-power extracting technologies based on the flow-induced vibration(FIV)effect have sparked great concerns by virtue of their prospective applications as a self-power source for the microelectronic devices in recent years.This article aims to conduct a comprehensive review for the FIV working principle and their potential applications for energy harvesting.First,various classifications of the FIV effect for energy harvesting are briefly introduced,such as vortex-induced vibration(VIV),galloping,flutter,and wake-induced vibration(WIV).Next,the development of FIV energy harvesting techniques is reviewed to discuss the research works in the past three years.The application of hybrid FIV energy harvesting techniques that can enhance the harvesting performance is also presented.Furthermore,the nonlinear designs of FIV-based energy harvesters are reported in this study,e.g.,multi-stability and limit-cycle oscillation(LCO)phenomena.Moreover,advanced FIV-based energy harvesting studies for fluid engineering applications are briefly mentioned.Finally,conclusions and future outlook are summarized.展开更多
This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric laye...This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.展开更多
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, un...Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.展开更多
A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linea...A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric sys- tem is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the tran- sient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can re- duce vibration and harvest some vibration energy.展开更多
Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to ...Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to their linear counterparts is much more obvious especially at small-scale where transition to nonlinear regime of vibration occurs at moderately small amplitudes of the base excitation. In this paper the nonlinear behavior of a disc-shaped piezoelectric laminated harvester considering midplane-stretching effect is investigated. Extended Hamilton’s principle is exploited to extract electromechanically coupled governing partial differential equations of the system. The equations are firstly order-reduced and then analytically solved implementing perturbation method of multiple scales. A nonlinear finite element method(FEM) simulation of the system is performed additionally for the purpose of verification which shows agreement with the analytical solution to a large extent. The frequency response of the output power at primary resonance of the harvester is calculated to investigate the effect of nonlinearity on the system performance. Effect of various parameters including mechanical quality factor, external load impedance and base excitation amplitude on the behavior of the system are studied. Findings indicate that in the nonlinear regime both output power and operational bandwidth of the harvester will be enhanced by increasing the mechanical quality factor which can be considered as a significant advantage in comparison to linear harvesters in which these two factors vary in opposite ways as quality factor is changed.展开更多
In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NL...In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model.展开更多
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Ha...Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.展开更多
Comsidering the fact there are no systematic study on crack effected by large-scale near--tip nonlinearitiesup to now, a nonlinear finite element formulation accounting for nonlinearities and elasticity coupled with p...Comsidering the fact there are no systematic study on crack effected by large-scale near--tip nonlinearitiesup to now, a nonlinear finite element formulation accounting for nonlinearities and elasticity coupled with piezoelectricity is derived and a finite element program is developed. Numerical examples are presented to show the effect of nonlinear fracture characteristics on fracture resistance. It is found that an electric field may give a negative driving forceto prevent crack propagation.展开更多
This study integrated piezoelectric layers in a flexible membrane to form a piezoelectric membrane.A fluid-filled piezoelectric membrane,which can be used as breakwater and wave energy converter simultaneously,was pre...This study integrated piezoelectric layers in a flexible membrane to form a piezoelectric membrane.A fluid-filled piezoelectric membrane,which can be used as breakwater and wave energy converter simultaneously,was presented.The mathematical models to describe the interactions of the waves with the piezoelectric membrane were given.The dimensionless parameters to control the behavior of the piezoelectric membrane were obtained.The mixed EulerianLagrangian method was employed to simulate the mathematical models.The simulation code was verified.Based on the simulation results,the effects of dimensionless elastic modulus of the membrane E^(*),tension of the membrane T_(0)^(*)and the resistance of the load R^(*)on the behavior of the piezoelectric membrane were discussed.As E^(*)is small(E^(*)<0.04)and T_(0)^(*)is not too small(T_(0)^(*)>0.0001),the response of the piezoelectric membrane can be considered as linear.For linear response,the minimum transmission coefficient and maximum output electric power of the piezoelectric membrane can be achieved simultaneously by adjusting T_(0)^(*)and R^(*).For larger E^(*),nonlinear behavior of the piezoelectric membrane is observed.At some larger values of E^(*),working frequency of piezoelectric elements can reach eight times the wave frequency.In these cases,higher output electric power can be achieved for smaller strain of the membrane.展开更多
Due to the increasing interests in using functionally graded piezoelectric materials(FGPMs) in the design of advanced micro-electro-mechanical systems, it is important to understand the stability behaviors of the FGPM...Due to the increasing interests in using functionally graded piezoelectric materials(FGPMs) in the design of advanced micro-electro-mechanical systems, it is important to understand the stability behaviors of the FGPM beams. In this study, considering the effects of geometrical nonlinearity, temperature, and electricity in the constitutive relations and the effect of the magnetic field on the FGPM beam, the Euler-Bernoulli beam model is adopted, and the nonlinear governing equation of motion is derived via Hamilton's principle. A perturbation method, which can decompose the deflection into static and dynamic components, is utilized to linearize the nonlinear governing equation. Then,a dynamic stability analysis is carried out, and the approximate analytical solutions for the nonlinear frequency and boundary frequencies of the unstable region are obtained.Numerical examples are performed to verify the present analysis. The effects of the static deflection, the static load factor, the temperature change, and the magnetic field flux on the stability behaviors of the FGPM beam are discussed. From the proposed analytical solutions and numerical results, one can easily and clearly find the effects of various controlled parameters, such as geometric and physical properties of the system, on the mechanical behaviors of structures, and the conclusions are very important and useful for the design of micro-devices.展开更多
Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electri...Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.展开更多
Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’...Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.展开更多
In this paper,the interactions between the transverse loads and the electrical field quantities are investigated based on the nonlinear constitutive relation.By considering a composite beam consisting of a piezoelectr...In this paper,the interactions between the transverse loads and the electrical field quantities are investigated based on the nonlinear constitutive relation.By considering a composite beam consisting of a piezoelectric semiconductor and elastic layers,the nonlinear model is established based on the phenomenological theory and Euler’s beam theory.Furthermore,an iteration procedure based on the differential quadrature method(DQM)is developed to solve the nonlinear governing equations.Before analysis,the convergence and correctness are surveyed.It is found that the convergence of the proposed iteration is fast.Then,the transverse pressure induced electrical field quantities are investigated in detail.From the calculated results,it can be found that the consideration of nonlinear constitutive relation is necessary for a beam undergoing a large load.Compared with the linear results,the consideration of the nonlinear constitutive relation breaks the symmetry for the electric potential,the electric field,and the perturbation carrier density,and has little influence on the electric displacement.Furthermore,the non-uniform pressures are considered.The results show that the distributions of the electric field quantities are sensitively altered.It indicates that the electrical properties can be manipulated with the design of different transverse loads.The conclusions in this paper could be the guidance on designing and manufacturing electronic devices accurately.展开更多
Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains...Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail.展开更多
基金The National Natural Science Foundation of China(No.10772086,10772085)
文摘The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.
基金supported by the National Key R&D Program of China (Grant No.2022YFB3206700)the Independent Research Project of the State Key Laboratory of Mechanical Transmission (Grant No.SKLMT-ZZKT-2022M06)the Innovation Group Science Fund of Chongqing Natural Science Foundation (Grant No.cstc2019jcyj-cxttX0003).
文摘Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance.
基金the National Natural Science Foundation of China(Nos.51805298 and 12072267)the Natural Science Foundation of Shandong Province of China(No.ZR2019PEE015)+3 种基金the Fundamental Research Funds for the Central Universities of China(No.2019ZRJC006)the 111 Project of China(No.BP0719007)the Innovation Capability Support Plan of Shaanxi Province of China(No.2020KJXX-021)the Young Scholars Program of Shandong University,Weihai of China(No.20820201004)。
文摘Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments.The energy extraction efficiency depends highly on the interface circuit,and should be highly improved to meet the power requirements.The nonlinear interface circuits in discrete components have been extensively explored and developed with the advantages of easy implementation,stable operation,high efficiency,and low cost.This paper reviews the state-of-the-art progress of nonlinear piezoelectric energy harvesting interface circuits in discrete components.First,the working principles and the advantages/disadvantages of four classical interface circuits are described.Then,the improved circuits based on the four typical circuits and other types of circuits are introduced in detail,and the advantages/disadvantages,output power,efficiency,energy consumption,and practicability of these circuits are analyzed.Finally,the future development trends of nonlinear piezoelectric energy harvesting circuits,e.g.,self-powered extraction,low-power consumption,and broadband characteristic,are predicted.
基金supported by the National Natural Science Foundation of China(Nos.10932004 and11272127)a grant from the Impact and Safety of Coastal Engineering Initiative,a Center of Excellence Program of Zhejiang Provincial Government at Ningbo University(No.zj1213)
文摘The nonlinear behaviors of a circular-cylinder piezoelectric power harvester (CCPPH) near resonance are analyzed based on the flow-induced flexural vibration mode. The geometrically-nonlinear effect of the cylinder is studied with considering the in-plane extension incidental to the large defection. The boundary electric charges generated from two deformation modes, flexure and in-plane extension, were distinguished with each other because the charge corresponding to the latter mode produces no contribution to the output current. Numerical results on output powers show that there are multi- valuedness and jump behaviors.
基金Project supported by the National Natural Science Foundation of China(No.11672071)the Fundamental Research Funds for the Central Universities(No.N170504023)
文摘The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.
基金supported by the National Natural Science Foundation of China(Nos.11702251,12002316)。
文摘Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.
基金the National Natural Science Foundation of China (Nos. 11972051 and 11672008)the Opening Project Foundation of the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China (No. KF-2020-11)+1 种基金the Seed Foundation of Beijing University of Technology for International Research Cooperation of China (No. 2021A08)the Innovation and Technology Commission of the Hong Kong Special Administrative Region to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center of China (No. K-BBY1)
文摘Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.,turbines and watermills),the micro-power extracting technologies based on the flow-induced vibration(FIV)effect have sparked great concerns by virtue of their prospective applications as a self-power source for the microelectronic devices in recent years.This article aims to conduct a comprehensive review for the FIV working principle and their potential applications for energy harvesting.First,various classifications of the FIV effect for energy harvesting are briefly introduced,such as vortex-induced vibration(VIV),galloping,flutter,and wake-induced vibration(WIV).Next,the development of FIV energy harvesting techniques is reviewed to discuss the research works in the past three years.The application of hybrid FIV energy harvesting techniques that can enhance the harvesting performance is also presented.Furthermore,the nonlinear designs of FIV-based energy harvesters are reported in this study,e.g.,multi-stability and limit-cycle oscillation(LCO)phenomena.Moreover,advanced FIV-based energy harvesting studies for fluid engineering applications are briefly mentioned.Finally,conclusions and future outlook are summarized.
基金supported by the National Natural Science Foundation of China (11172138, 10727201)
文摘This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale.
基金supported by the National Natural Science Foundation of China (Grants 11402126, 11502122, and 11290152)the Scientific Research Foundation of the Inner Mongolia University of Technology (Grant ZD201410)
文摘Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity.
基金supported by the National Natural Science Foundation of China(Nos.11572182,11232009,and 11402151) the Natural Science Foundation of Liaoning Province(No.2015020106)
文摘A mechanical-piezoelectric system is explored to reduce vibration and to harvest energy. The system consists of a piezoelectric device and a nonlinear energy sink (NES), which is a nonlinear oscillator without linear stiffness. The NES-piezoelectric sys- tem is attached to a 2-degree-of-freedom primary system subjected to a shock load. This mechanical-piezoelectric system is investigated based on the concepts of the percentages of energy transition and energy transition measure. The strong target energy transfer occurs for some certain transient excitation amplitude and NES nonlinear stiffness. The plots of wavelet transforms are used to indicate that the nonlinear beats initiate energy transitions between the NES-piezoelectric system and the primary system in the tran- sient vibration, and a 1:1 transient resonance capture occurs between two subsystems. The investigation demonstrates that the integrated NES-piezoelectric mechanism can re- duce vibration and harvest some vibration energy.
文摘Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to their linear counterparts is much more obvious especially at small-scale where transition to nonlinear regime of vibration occurs at moderately small amplitudes of the base excitation. In this paper the nonlinear behavior of a disc-shaped piezoelectric laminated harvester considering midplane-stretching effect is investigated. Extended Hamilton’s principle is exploited to extract electromechanically coupled governing partial differential equations of the system. The equations are firstly order-reduced and then analytically solved implementing perturbation method of multiple scales. A nonlinear finite element method(FEM) simulation of the system is performed additionally for the purpose of verification which shows agreement with the analytical solution to a large extent. The frequency response of the output power at primary resonance of the harvester is calculated to investigate the effect of nonlinearity on the system performance. Effect of various parameters including mechanical quality factor, external load impedance and base excitation amplitude on the behavior of the system are studied. Findings indicate that in the nonlinear regime both output power and operational bandwidth of the harvester will be enhanced by increasing the mechanical quality factor which can be considered as a significant advantage in comparison to linear harvesters in which these two factors vary in opposite ways as quality factor is changed.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172236, 12202289,and U21A20430)the Science and Technology Research Project of Hebei Education Department of China (No. QN2022083)。
文摘In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model.
基金Project supported by the National Natural Science Foundation of China(No.10572049)
文摘Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.
文摘Comsidering the fact there are no systematic study on crack effected by large-scale near--tip nonlinearitiesup to now, a nonlinear finite element formulation accounting for nonlinearities and elasticity coupled with piezoelectricity is derived and a finite element program is developed. Numerical examples are presented to show the effect of nonlinear fracture characteristics on fracture resistance. It is found that an electric field may give a negative driving forceto prevent crack propagation.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072306)。
文摘This study integrated piezoelectric layers in a flexible membrane to form a piezoelectric membrane.A fluid-filled piezoelectric membrane,which can be used as breakwater and wave energy converter simultaneously,was presented.The mathematical models to describe the interactions of the waves with the piezoelectric membrane were given.The dimensionless parameters to control the behavior of the piezoelectric membrane were obtained.The mixed EulerianLagrangian method was employed to simulate the mathematical models.The simulation code was verified.Based on the simulation results,the effects of dimensionless elastic modulus of the membrane E^(*),tension of the membrane T_(0)^(*)and the resistance of the load R^(*)on the behavior of the piezoelectric membrane were discussed.As E^(*)is small(E^(*)<0.04)and T_(0)^(*)is not too small(T_(0)^(*)>0.0001),the response of the piezoelectric membrane can be considered as linear.For linear response,the minimum transmission coefficient and maximum output electric power of the piezoelectric membrane can be achieved simultaneously by adjusting T_(0)^(*)and R^(*).For larger E^(*),nonlinear behavior of the piezoelectric membrane is observed.At some larger values of E^(*),working frequency of piezoelectric elements can reach eight times the wave frequency.In these cases,higher output electric power can be achieved for smaller strain of the membrane.
基金Project supported by the National Natural Science Foundation of China(No.11802319)the National Key Research and Development Program of China(No.2017YFB1102801)。
文摘Due to the increasing interests in using functionally graded piezoelectric materials(FGPMs) in the design of advanced micro-electro-mechanical systems, it is important to understand the stability behaviors of the FGPM beams. In this study, considering the effects of geometrical nonlinearity, temperature, and electricity in the constitutive relations and the effect of the magnetic field on the FGPM beam, the Euler-Bernoulli beam model is adopted, and the nonlinear governing equation of motion is derived via Hamilton's principle. A perturbation method, which can decompose the deflection into static and dynamic components, is utilized to linearize the nonlinear governing equation. Then,a dynamic stability analysis is carried out, and the approximate analytical solutions for the nonlinear frequency and boundary frequencies of the unstable region are obtained.Numerical examples are performed to verify the present analysis. The effects of the static deflection, the static load factor, the temperature change, and the magnetic field flux on the stability behaviors of the FGPM beam are discussed. From the proposed analytical solutions and numerical results, one can easily and clearly find the effects of various controlled parameters, such as geometric and physical properties of the system, on the mechanical behaviors of structures, and the conclusions are very important and useful for the design of micro-devices.
文摘Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.
文摘Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.
基金Project supported by the National Natural Science Foundation of China(No.12072253)。
文摘In this paper,the interactions between the transverse loads and the electrical field quantities are investigated based on the nonlinear constitutive relation.By considering a composite beam consisting of a piezoelectric semiconductor and elastic layers,the nonlinear model is established based on the phenomenological theory and Euler’s beam theory.Furthermore,an iteration procedure based on the differential quadrature method(DQM)is developed to solve the nonlinear governing equations.Before analysis,the convergence and correctness are surveyed.It is found that the convergence of the proposed iteration is fast.Then,the transverse pressure induced electrical field quantities are investigated in detail.From the calculated results,it can be found that the consideration of nonlinear constitutive relation is necessary for a beam undergoing a large load.Compared with the linear results,the consideration of the nonlinear constitutive relation breaks the symmetry for the electric potential,the electric field,and the perturbation carrier density,and has little influence on the electric displacement.Furthermore,the non-uniform pressures are considered.The results show that the distributions of the electric field quantities are sensitively altered.It indicates that the electrical properties can be manipulated with the design of different transverse loads.The conclusions in this paper could be the guidance on designing and manufacturing electronic devices accurately.
文摘Under combined electro-thermo-mechanical loadings, the nonlinear bending of piezoelectric cylindrical shell reinforced with boron nitride nanotubes (BNNTs) is investigated in this paper. By employing nonlinear strains based on Donnell shell theory and utilizing piezoelectric theory including thermal effects, the constitutive relations of the piezoelectric shell reinforced with BNNTs are established. Then the governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage, temperature, as well as volume fraction on the deflection and bending moment of axisymmetrical piezoelectric cylindrical shell reinforced with BNNTs are discussed in detail.