A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive predicti...A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.展开更多
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin...Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data.展开更多
Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimizatio...Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.展开更多
Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive...Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.展开更多
Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore,...Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the import and export trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecas ting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably catch' the dynamic characteristic of the nonlinear system which produced the origin serial.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
A method for predicting colored noise by introducing prediction of nonlinear time series is presented. By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through chan...A method for predicting colored noise by introducing prediction of nonlinear time series is presented. By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through changing the filter bandwidth for stochastic noise and the sampling rate for colored noise. The results show that colored noise can be predicted. The prediction error decreases with the increasing of the sampling rate or the narrowing of the filter bandwidth. If the parameters are selected properly, the prediction precision can meet the requirement of engineering implementation. The results offer a new reference way for increasing the ability for detecting weak signal in signal processing system.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica...A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.展开更多
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher...This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to co...In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.展开更多
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W...Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
For the issues of attitude strong coupling and the increments of attitude errors of upper stage during multi-satellite disposing,a three-axis stability nonlinear attitude control algorithm via feedback linearization i...For the issues of attitude strong coupling and the increments of attitude errors of upper stage during multi-satellite disposing,a three-axis stability nonlinear attitude control algorithm via feedback linearization is presented.By the definitions of coordinates and the attitude angle during multi-satellite disposing,the attitude dynamics and kinematics equations with Euler angles described are built.And the equations are equivalently linearized based on feedback linearization theory.A three-axis nonlinear predictive control algorithm is designed and the system robustness is analyzed.An example of mathematical simulation is completed using the Matlab/Simulink environment.Simulation results showed that the control algorithm has good disturbance rejection,rapidity,stability and robustness.展开更多
Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the p...Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.展开更多
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat...With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca...BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.展开更多
基金Project supported by the Scientific Research Foundation for the Returned 0verseas Chinese Scholars of China (Grant No 2004.176.4) and the Natural Science Foundation of Shandong Province of China (Grant No Z2004G01).
文摘A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.
基金provided by the National Natural Science Foundation of China(Grant Nos.41275039 and 41471305)the Preeminence Youth Cultivation Project of Sichuan (Grant No.2015JQ0037)
文摘Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.
基金Supported by National Natural Science Foundation of China(Grant No.51975481)Fundamental Research Funds for the Central Universities of China(Grant No.D5000220061).
文摘Nonlinear friction is a dominant factor afecting the control accuracy of CNC machine tools.This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme.The nonlinear friction-induced tracking error is frstly modeled and then utilized to establish the nonlinear model predictive scheme,which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective.During the optimization procedure,the derivative of compensation signal is constrained to avoid vibration of machine tools.In contrast to other existing approaches,the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter,while fnely identifying the parameters related to the pre-sliding phenomenon is not required.As a result,it greatly facilitates the practical applicability.Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%,and reduce the contour errors by more than 50%.
基金Supported bythe Natural Science Foundation of Hunan Province(2001ABB006 ,2003ABA043)
文摘Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the import and export trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecas ting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably catch' the dynamic characteristic of the nonlinear system which produced the origin serial.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
文摘A method for predicting colored noise by introducing prediction of nonlinear time series is presented. By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through changing the filter bandwidth for stochastic noise and the sampling rate for colored noise. The results show that colored noise can be predicted. The prediction error decreases with the increasing of the sampling rate or the narrowing of the filter bandwidth. If the parameters are selected properly, the prediction precision can meet the requirement of engineering implementation. The results offer a new reference way for increasing the ability for detecting weak signal in signal processing system.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
基金Support by China 973 Project (No. 2002CB312200).
文摘A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
文摘This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013)
文摘In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.
基金Financial support from the National Key R&D Program of China(No.2017YFB0601805)。
文摘Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
文摘For the issues of attitude strong coupling and the increments of attitude errors of upper stage during multi-satellite disposing,a three-axis stability nonlinear attitude control algorithm via feedback linearization is presented.By the definitions of coordinates and the attitude angle during multi-satellite disposing,the attitude dynamics and kinematics equations with Euler angles described are built.And the equations are equivalently linearized based on feedback linearization theory.A three-axis nonlinear predictive control algorithm is designed and the system robustness is analyzed.An example of mathematical simulation is completed using the Matlab/Simulink environment.Simulation results showed that the control algorithm has good disturbance rejection,rapidity,stability and robustness.
文摘Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.
基金The National Natural Science Foundation of China under contract No.41405062
文摘With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
文摘BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.