In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil fl...In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.展开更多
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car...Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.展开更多
基金Supported by National High Technology Research and Development Program of China(2013AA040704)the Fund for the National Natural Science Foundation of China(61374203)
文摘In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.
基金the National Special Fund for Agro-scientific Research in the Public Interest(No.201003024)
文摘Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.