Rogue waves are a class of nonlinear waves with extreme amplitudes,which usually appear suddenly and disappear without any trace.Recently,the parity-time(PT)-symmetric vector rogue waves(RWs)of multi-component nonline...Rogue waves are a class of nonlinear waves with extreme amplitudes,which usually appear suddenly and disappear without any trace.Recently,the parity-time(PT)-symmetric vector rogue waves(RWs)of multi-component nonlinear Schrödinger equation(n-NLSE)are usually derived by the methods of integrable systems.In this paper,we utilize the multi-stage physics-informed neural networks(MS-PINNs)algorithm to derive the data-driven symmetric vector RWs solution of coupled NLS system in elliptic and X-shapes domains with nonzero boundary condition.The results of the experiment show that the multi-stage physics-informed neural networks are quite feasible and effective for multi-component nonlinear physical systems in the above domains and boundary conditions.展开更多
In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not...In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.展开更多
This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in im...This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in improving the simulation efficiency.Our scheme uses the ultra-weak discontinuous Galerkin(DG)formulation and belongs to the framework of adaptive multiresolution schemes.Various numerical experiments are presented to demon-strate the excellent capability of capturing the soliton waves and the blow-up phenomenon.展开更多
This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Ca...This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provideτfunctions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.展开更多
In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables...In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables,the equation is transformed into an ordinary differential equation.Then,under the parameter conditions,we obtain the Hamiltonian system and phase portraits.Finally,traveling wave solutions which contains solitary,periodic and kink wave so-lutions are constructed by integrating along the homoclinic or heteroclinic orbits.In addition,by choosing appropriate values to parameters,different types of structures of solutions can be displayed graphically.Moreover,the computational work and it’sfigures show that this tech-nique is influential and efficient.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)...In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.展开更多
The wave-operator nonlinear Schrödinger equation was introduced in the literature.Further,nonlocal space-time reverse complex field equations were also recently introduced.Studies in this area were focused on emp...The wave-operator nonlinear Schrödinger equation was introduced in the literature.Further,nonlocal space-time reverse complex field equations were also recently introduced.Studies in this area were focused on employing the inverse scattering method and Darboux transformation.Here,we present an approach to find the solutions of the wave-operator nonlinear Schrödinger equation with space and time reverse(W-O-NLSE-STR).It is based on implementing the unified method together with introducing a conventional formulation of the solutions.Indeed,a field and a reverse field may be generated.So,for deriving the solutions of W-O-NLSE-STR,it is evident to distinguish two cases(when the field and its reverse are interactive or not-interactive).In the non-interactive and interactive cases,exact and approximate solutions are obtained.In both cases,the solutions are evaluated numerically and they are displayed graphically.It is observed that the field exhibits solitons propagating essentially(or mainly)on the negative space variable,while those of the reverse field propagate on the other side(or vice versa).These results are completely novel,and we think that it is an essential behavior that characterizes a complex field system with STR.On the other hand,they may exhibit right and left cable patterns(or vice versa).It is found that the solutions of the field and its reverse exhibit self-phase modulation by solitary waves.In the interactive case,the pulses of the field and its reverse propagate in the whole space.The analysis of modulation stability shows that,when the field is stable,its reverse is unstable or both are stable.This holds whenever the polarization of the medium is selfdefocusing.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location o...Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location of the clock in the field. This means that speed of light in vacuo in centripetal force field is not and cannot be a true physical constant but a function of location in such field because definition of c involves a unit of time and duration of that time unit varies with location in such field. However, classical Schrödinger equation assumes a prior the constancy of c in field, even though this may not be the case. Therefore, it is necessary to revise the classical equation in order to comply with the law of mass-energy equivalence of Einstein hence time dilation in centripetal force field.展开更多
This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the correspon...This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).展开更多
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NL...We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities(especially the soliton accelerations and interaction forces);whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles,particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.展开更多
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz...We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.展开更多
We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(R...We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(RK4IP-CQE), and the other is the local error adaptive step-control method(RK4IP-LEM). The methods are developed in the vector form of fourthorder Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.展开更多
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b...We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.展开更多
In this study,the sine-Gordon equation method is modified to deal with variable-coefficient systems containing imaginary parts,such as nonlinear Schrödinger systems.These are of considerable importance in many fi...In this study,the sine-Gordon equation method is modified to deal with variable-coefficient systems containing imaginary parts,such as nonlinear Schrödinger systems.These are of considerable importance in many fields of research,including ocean engineering and optics.As an example,we apply the modified method to variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system with variable coefficients,treating them as one-dimensional and two-dimensional systems,respectively.As a result of this application,novel solitary wave solutions are obtained for both cases.Moreover,some figures are provided to illustrate how the solitary wave propagation is determined by the different values of the variable group velocity dispersion terms,which can be used to model various phenomena.展开更多
In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the ...In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.展开更多
Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-qui...Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11771151,61571005,and 61901160)the Science and Technology Program of Guangzhou(Grant No.201904010362)the Fundamental Research Program of Guangdong Province,China(Grant No.2020B1515310023)。
文摘Rogue waves are a class of nonlinear waves with extreme amplitudes,which usually appear suddenly and disappear without any trace.Recently,the parity-time(PT)-symmetric vector rogue waves(RWs)of multi-component nonlinear Schrödinger equation(n-NLSE)are usually derived by the methods of integrable systems.In this paper,we utilize the multi-stage physics-informed neural networks(MS-PINNs)algorithm to derive the data-driven symmetric vector RWs solution of coupled NLS system in elliptic and X-shapes domains with nonzero boundary condition.The results of the experiment show that the multi-stage physics-informed neural networks are quite feasible and effective for multi-component nonlinear physical systems in the above domains and boundary conditions.
基金the National Natural Science Foundation of China Grants U1637208 and 71773024.the National Natural Science Foundation of China Grant 11971132.
文摘In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.
基金Funding Y.Liu:Research supported in part by a grant from the Simons Foundation(426993,Yuan Liu)W.Guo:Research is supported by NSF grant DMS-1830838+1 种基金Y.Cheng:Research is supported by NSF grants DMS-1453661 and DMS-1720023Z.Tao:Research is supported by NSFC Grant 12001231.
文摘This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-tions.The solutions to such equations often exhibit solitary wave and local structures,which make adaptivity essential in improving the simulation efficiency.Our scheme uses the ultra-weak discontinuous Galerkin(DG)formulation and belongs to the framework of adaptive multiresolution schemes.Various numerical experiments are presented to demon-strate the excellent capability of capturing the soliton waves and the blow-up phenomenon.
基金supported by the National Natural Science Foundation of China(No.12271334).
文摘This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provideτfunctions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
基金supported by Hunan Provincial Natural Science Foundation of China Grant No.2021JJ30297Scientific Research Fund of Hunan Provincial Education Department No.22A0478 and No.22C0365+1 种基金Hunan Province Graduate Research Innovation,China Project No.CX20231208Research and Innovation team of Hunan Institute of Science and Technology (Grant No.2019-TD-15).
文摘In this paper,by using the bifurcation theory for dynamical system,we construct traveling wave solutions of a high-order nonlinear Schrödinger equation with a quintic nonlin-earity.Firstly,based on wave variables,the equation is transformed into an ordinary differential equation.Then,under the parameter conditions,we obtain the Hamiltonian system and phase portraits.Finally,traveling wave solutions which contains solitary,periodic and kink wave so-lutions are constructed by integrating along the homoclinic or heteroclinic orbits.In addition,by choosing appropriate values to parameters,different types of structures of solutions can be displayed graphically.Moreover,the computational work and it’sfigures show that this tech-nique is influential and efficient.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinearSchr¨odinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金supported by the National Natural Science Foundation of China(12171212)。
文摘In this paper,we are concerned with the existence of multiple solutions to the critical magnetic Schrödinger equation(-i▽-a(x))^(2)u+⒂λV(x)u=p|u|^(p-2)u+(∫R(n)|u(y)|^(2)_(a)^(*)/|x-y|^(a)dy)|u|2_(a)^(*)-2_(u)in R^(N),(0.1)where N≥4,2≤p<2^(*),2_α^(*)=(2N-α)/(N-2)with 0<α<4,λ>0,μ∈R,A(x)=(A_(1)(x),A_(2)(x),…,A_(N)(x))is a real local Hölder continuous vector function,i is the imaginary unit,and V(x)is a real valued potential function on R^(N).Supposing thatΩ=int V^(-1)(0)■R^(N)is bounded,we show that problem(0.1)possesses at least cat_(Ω)(Ω)nontrivial solutions ifλis large.
文摘The wave-operator nonlinear Schrödinger equation was introduced in the literature.Further,nonlocal space-time reverse complex field equations were also recently introduced.Studies in this area were focused on employing the inverse scattering method and Darboux transformation.Here,we present an approach to find the solutions of the wave-operator nonlinear Schrödinger equation with space and time reverse(W-O-NLSE-STR).It is based on implementing the unified method together with introducing a conventional formulation of the solutions.Indeed,a field and a reverse field may be generated.So,for deriving the solutions of W-O-NLSE-STR,it is evident to distinguish two cases(when the field and its reverse are interactive or not-interactive).In the non-interactive and interactive cases,exact and approximate solutions are obtained.In both cases,the solutions are evaluated numerically and they are displayed graphically.It is observed that the field exhibits solitons propagating essentially(or mainly)on the negative space variable,while those of the reverse field propagate on the other side(or vice versa).These results are completely novel,and we think that it is an essential behavior that characterizes a complex field system with STR.On the other hand,they may exhibit right and left cable patterns(or vice versa).It is found that the solutions of the field and its reverse exhibit self-phase modulation by solitary waves.In the interactive case,the pulses of the field and its reverse propagate in the whole space.The analysis of modulation stability shows that,when the field is stable,its reverse is unstable or both are stable.This holds whenever the polarization of the medium is selfdefocusing.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
文摘Presence of centripetal force field in space shall cause time dilation of any clock at rest therein. Therefore, duration of unit of time determined by any clock in such field is not constant but varies with location of the clock in the field. This means that speed of light in vacuo in centripetal force field is not and cannot be a true physical constant but a function of location in such field because definition of c involves a unit of time and duration of that time unit varies with location in such field. However, classical Schrödinger equation assumes a prior the constancy of c in field, even though this may not be the case. Therefore, it is necessary to revise the classical equation in order to comply with the law of mass-energy equivalence of Einstein hence time dilation in centripetal force field.
文摘This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
基金Project supported by the Natural Science Foundation of Beijing Municipality (Grant No.1212007)the National Natural Science Foundation of China (Grant No.11705284)the Open Project Program of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Grant No.PRP/DX-2211)。
文摘We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities(especially the soliton accelerations and interaction forces);whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles,particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.
基金the National Natural Science Foundation of China(Grant Nos.11871232 and 12201578)Natural Science Foundation of Henan Province,China(Grant Nos.222300420377 and 212300410417)。
文摘We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2021YFC2201803 and 2020YFC2200104)。
文摘We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(RK4IP-CQE), and the other is the local error adaptive step-control method(RK4IP-LEM). The methods are developed in the vector form of fourthorder Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975204 and 12075208)the Project of Zhoushan City Science and Technology Bureau (Grant No.2021C21015)the Training Program for Leading Talents in Universities of Zhejiang Province。
文摘We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one.
基金The authors would like to thank the Deanship of Scientific Research,Majmaah University,Saudi Arabia,for funding this work under project No.R-1441-26.
文摘In this study,the sine-Gordon equation method is modified to deal with variable-coefficient systems containing imaginary parts,such as nonlinear Schrödinger systems.These are of considerable importance in many fields of research,including ocean engineering and optics.As an example,we apply the modified method to variable-coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system with variable coefficients,treating them as one-dimensional and two-dimensional systems,respectively.As a result of this application,novel solitary wave solutions are obtained for both cases.Moreover,some figures are provided to illustrate how the solitary wave propagation is determined by the different values of the variable group velocity dispersion terms,which can be used to model various phenomena.
文摘In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.
文摘Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.