The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapuno...The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.展开更多
Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults oc...Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults occurring simultaneously for nonlinear systems.This paper proposes a method based on differential geometry theories to solve this problem.Then the evaluation of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is achieved.To deal with the effect of control laws on the evaluation results of fault diagnosability,a design scheme of the evaluation of fault diagnosability is proposed.Then the influence of uncertainties on the evaluation results of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is analyzed.The numerical simulation results are obtained to show the effectiveness of the proposed evaluation scheme of fault diagnosability.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
This paper concerns with the parameters tuning of active disturbance rejection control(ADRC) for a class of nonlinear systems with sampling rate not fast enough. The theoretical results show the quantitative relations...This paper concerns with the parameters tuning of active disturbance rejection control(ADRC) for a class of nonlinear systems with sampling rate not fast enough. The theoretical results show the quantitative relationship between the sampling rate, the parameters of ADRC, the size of uncertainties in system and the properties of the closed-loop system. Furthermore, the capability of the sampled-data ADRC under given sampling rate is quantitatively discussed.展开更多
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adap...A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach.展开更多
This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appea...This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.展开更多
This paper focuses on the stability analysis of the active disturbance rejection control (ADRC)for a class of uncertain systems.To overcome the difficulty of defining a reasonable Lyapunov function and setting limitat...This paper focuses on the stability analysis of the active disturbance rejection control (ADRC)for a class of uncertain systems.To overcome the difficulty of defining a reasonable Lyapunov function and setting limitations of system parameters,the converse Lyapunov theorem and the disturbance theory are employed.This paper proves that the estimation error of the extended state observer (ESO)and the tracking error of the closed-loop system using ADRC are uniformly ultimately bounded and monotonously diminishing with the increase of their respective bandwidth,so that the stability of the ADRC system could be performed.In order to further illustrate the relationship between the stability range and bandwidths,it analyzes quantitatively the performance of ESO and ADRC based on the root locus and the step response.Finally,an example based on a typical control system is carried out,and simulation results verify the theoretical analysis proved in this paper.展开更多
In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncer...In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear funct...In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.展开更多
In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimens...In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.展开更多
This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This...This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arith- metic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the "wrap- ping effect" of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effective- ness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surfa...This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade ...This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.展开更多
In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state varia...In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.展开更多
This paper addresses the adaptive synchronization for uncertain Liu system via a nonlinear input. By using a single nonlinear controller, the approach is utilized to implement the synchronization of Liu system with to...This paper addresses the adaptive synchronization for uncertain Liu system via a nonlinear input. By using a single nonlinear controller, the approach is utilized to implement the synchronization of Liu system with total parameters unknown. This method is simple and can be easily designed. What is more, it improves the existing conclusions in Ref [12]. Simulation results prove that the controller is effective and feasible in the end.展开更多
文摘The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
基金the Natural Science Foundation of Fujian Province,China(2019J05024)the Education Department Foundation of Fujian Province,China(JAT170091).
文摘Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults occurring simultaneously for nonlinear systems.This paper proposes a method based on differential geometry theories to solve this problem.Then the evaluation of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is achieved.To deal with the effect of control laws on the evaluation results of fault diagnosability,a design scheme of the evaluation of fault diagnosability is proposed.Then the influence of uncertainties on the evaluation results of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is analyzed.The numerical simulation results are obtained to show the effectiveness of the proposed evaluation scheme of fault diagnosability.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2014CB845303the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences
文摘This paper concerns with the parameters tuning of active disturbance rejection control(ADRC) for a class of nonlinear systems with sampling rate not fast enough. The theoretical results show the quantitative relationship between the sampling rate, the parameters of ADRC, the size of uncertainties in system and the properties of the closed-loop system. Furthermore, the capability of the sampled-data ADRC under given sampling rate is quantitatively discussed.
基金supported by the Funds for Creative Research Groups of China (No.60821063)the State Key Program of National Natural Science of China (No.60534010)+3 种基金the National 973 Program of China (No.2009CB320604)the Funds of National Science of China (No.60674021)the 111 Project (B08015)the Funds of PhD program of MOE,China (No.20060145019)
文摘A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach.
文摘This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.
基金supported by the National Natural Science Foundation of China under Grant No.61304026
文摘This paper focuses on the stability analysis of the active disturbance rejection control (ADRC)for a class of uncertain systems.To overcome the difficulty of defining a reasonable Lyapunov function and setting limitations of system parameters,the converse Lyapunov theorem and the disturbance theory are employed.This paper proves that the estimation error of the extended state observer (ESO)and the tracking error of the closed-loop system using ADRC are uniformly ultimately bounded and monotonously diminishing with the increase of their respective bandwidth,so that the stability of the ADRC system could be performed.In order to further illustrate the relationship between the stability range and bandwidths,it analyzes quantitatively the performance of ESO and ADRC based on the root locus and the step response.Finally,an example based on a typical control system is carried out,and simulation results verify the theoretical analysis proved in this paper.
基金Natural Science Foundation of Jiangsu Province (No.SBK20082815)Aeronautical Science Foundation of China (No.20075152014)
文摘In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金supported by National Natural Science Foundation of China (No. 60525303 and 60704009)Key Research Program of Hebei Education Department (No. ZD200908)
文摘In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globally uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.
基金supported by the National Natural Science Foundation of China under Grant No.11688101
文摘In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.
文摘This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arith- metic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the "wrap- ping effect" of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effective- ness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
基金supported by the National Natural Science Foundation of China(No.60874024,60574013)
文摘This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China (60674036), the Science and Technical Development Plan of Shandong Province (2004GG4204014), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), and the Excellent Young and Middle-aged Scientist Award of Shandong Province of China (2007BS01010)
基金supported by the National Natural Science Foundation of China(61833016,61873295).
文摘This paper deals with the problem of active disturbance rejection control(ADRC)design for a class of uncertain nonlinear systems with sporadic measurements.A novel extended state observer(ESO)is designed in a cascade form consisting of a continuous time estimator,a continuous observation error predictor,and a reset compensator.The proposed ESO estimates not only the system state but also the total uncertainty,which may include the effects of the external perturbation,the parametric uncertainty,and the unknown nonlinear dynamics.Such a reset compensator,whose state is reset to zero whenever a new measurement arrives,is used to calibrate the predictor.Due to the cascade structure,the resulting error dynamics system is presented in a non-hybrid form,and accordingly,analyzed in a general sampled-data system framework.Based on the output of the ESO,a continuous ADRC law is then developed.The convergence of the resulting closed-loop system is proved under given conditions.Two numerical simulations demonstrate the effectiveness of the proposed control method.
基金National Natural Science Foundation of China (60674036, 60974003), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundation of P. R. China (60274019)National Key Basic Research and Development Program of P. R. China (2002CB312200)
文摘In this paper, an indirect adaptive fuzzy output feedback controller with supervisory mode for a class of unknown nonlinear systems is developed. The proposed approach does not need the availability of the state variables, moreover, a supervisory controller is appended to the adaptive fuzzy controller to force the state to be within the constraint set. Therefore, if the adaptive fuzzy controller cannot maintain the stability, the supervisory controller starts to work to guarantee stability. On the other hand, if the adaptive fuzzy controller works well, the supervisory controller will be de-activated. The overall adaptive fuzzy control scheme guarantees the stability of the whole closed-loop systems. The simulation results confirm the effectiveness of the proposed method.
基金Project supported by the Educational Commission of Hubei Province of China,(Grant No 080056)
文摘This paper addresses the adaptive synchronization for uncertain Liu system via a nonlinear input. By using a single nonlinear controller, the approach is utilized to implement the synchronization of Liu system with total parameters unknown. This method is simple and can be easily designed. What is more, it improves the existing conclusions in Ref [12]. Simulation results prove that the controller is effective and feasible in the end.
基金National Natural Science Foundation of P. R. China (60574027)Opening Project of National Laboratory of Indus-trial Control Technology of Zhejiang University (0708001)