The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equa...The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equations by using Krasnoselskii’s fixed point theorem as well as the theory of the evolution family. The interest of this paper is that any assumptions are not imposed on the nonlocal terms and Green’s functions and a new alternative method is applied to prove the existence of mild solutions. The results obtained in this paper may improve some related conclusions on this topic. An example is given as an application of the results.展开更多
In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization an...In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization and continuation of the recent results on this issue.In the end,an example is given to show the application of the results.展开更多
A fixed point analysis approach is used to investigate the existence of mild solutions of second order semilinear impulsive delay integrodifferential equations with nonlocal conditions.Without imposing compactness con...A fixed point analysis approach is used to investigate the existence of mild solutions of second order semilinear impulsive delay integrodifferential equations with nonlocal conditions.Without imposing compactness condition on the cosine family of operators,we give some sufficient conditions for the existence of mild solutions of such system.Finally,an example is presented to illustrate the utility of the proposed result.The results improve some recent results.展开更多
In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principl...In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.展开更多
In this article, by using theory of linear evolution system and Schauder fixed point theorem, we establish a sufficient result of exact null controllability for a non-autonomous functional evolution system with nonloc...In this article, by using theory of linear evolution system and Schauder fixed point theorem, we establish a sufficient result of exact null controllability for a non-autonomous functional evolution system with nonlocal conditions. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is also provided to show an application of the obtained result.展开更多
In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by mean...This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.展开更多
In this paper we examine the controllability problems of certain evolution equations with nonlocal conditions. Using the Schaefer fixed-point theorem, we obtain sufficient conditions for controllability and we give an...In this paper we examine the controllability problems of certain evolution equations with nonlocal conditions. Using the Schaefer fixed-point theorem, we obtain sufficient conditions for controllability and we give an application.展开更多
In this paper,we are concerned with the controllability of damped second-order integrodifferential systems with impulses.Further the result is extended to study the controllability of nonlinear neutral systems with no...In this paper,we are concerned with the controllability of damped second-order integrodifferential systems with impulses.Further the result is extended to study the controllability of nonlinear neutral systems with nonlocal conditions.The fixed point analysis approach is adopted in investigation.Sufficient conditions are formulated with a noncompact condition on the cosine family of operators.The results are obtained using the Banach fixed point theorem.An example is presented to illustrate the results.展开更多
In this paper, we establish a set of sufficient conditions for the controllability of damped second-order impulsive neutral integrodifferential systems with nonlocal initial conditions in Banach spaces. The approach u...In this paper, we establish a set of sufficient conditions for the controllability of damped second-order impulsive neutral integrodifferential systems with nonlocal initial conditions in Banach spaces. The approach used is the Sadovskii fixed point theorem combined with a noncompact condition on the cosine family of operators. An example is oresented to illustrate the result.展开更多
This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the ...This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.展开更多
In this paper we examine controllability problems of evolution inclusions with nonlocal conditions. Using Kakutani's fixed point theorem and Schauder's fixed point the-orem, we establish sufficient conditions ...In this paper we examine controllability problems of evolution inclusions with nonlocal conditions. Using Kakutani's fixed point theorem and Schauder's fixed point the-orem, we establish sufficient conditions for the controllability under convex and nonconvex orientor fields respectively.展开更多
In this paper,using a fixed point theorem for condensing multi-valued maps,we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with n...In this paper,using a fixed point theorem for condensing multi-valued maps,we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.展开更多
In this paper, using the theory of resolvent operators, Banach,s contraction prin-ciple and Schauder,s fixed point theorem, we study the existence of integral solutions to semilinear integrodifferential equations unde...In this paper, using the theory of resolvent operators, Banach,s contraction prin-ciple and Schauder,s fixed point theorem, we study the existence of integral solutions to semilinear integrodifferential equations under nonlocal conditions in Banach space. An example is provided to illustrate the results obtained.展开更多
In this paper, we establish sufficient conditions for the controllability of a class of semilinear impulsive integrodifferential systems with nonlocal initial conditions in Banach spaces. We derive the conditions usin...In this paper, we establish sufficient conditions for the controllability of a class of semilinear impulsive integrodifferential systems with nonlocal initial conditions in Banach spaces. We derive the conditions using Hausdorff measure of noncompactness, Sadovskii fixed point theorem and operator semigroups in particular dropping compactness of the operator.展开更多
In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain propertie...In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain properties. Some existence results are obtained by means of nonlinear alternative of Leray-Schauder type theorem and Krasnosel-skii's fixed point theorem.展开更多
The existence,uniqueness,and continuous dependence to the mild solutions of the nonlocal Cauchy problem were proved for a class of semilinear fractional neutral differential equations.The results are obtained by using...The existence,uniqueness,and continuous dependence to the mild solutions of the nonlocal Cauchy problem were proved for a class of semilinear fractional neutral differential equations.The results are obtained by using the Krasnoselskii's fixed point theorem and the theory of resolvent operators for integral equations.展开更多
In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the b...In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the basis. The convergence analysis of the proposed scheme is derived. Numerical experiments are carried out to explain the efficiency and precision of the proposed scheme. Furthermore, the reliability of the scheme is verified by comparisons with assured existing methods.展开更多
This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the react...This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the reaction terms, the weight functions and the nonlinear terms in the boundary conditions on global existence and blow up for this equation. Moreover, we establish blow-up rate estimates under some appropriate hypotheses.展开更多
This paper deals with an evolution p-Laplace equation with nonlocal source subject to weighted nonlocal Dirichlet boundary conditions. We give sufficient conditions for the existence of global and non-global solutions.
文摘The existence of mild solutions for non-autonomous evolution equations with nonlocal conditions in Banach space is studied in this article. We obtained the existence of at least one mild solution to the evolution equations by using Krasnoselskii’s fixed point theorem as well as the theory of the evolution family. The interest of this paper is that any assumptions are not imposed on the nonlocal terms and Green’s functions and a new alternative method is applied to prove the existence of mild solutions. The results obtained in this paper may improve some related conclusions on this topic. An example is given as an application of the results.
基金National Natural Science Foundation of China(No.10971139)Fundamental Research Funds for the Central Universities,China(No.B081)
文摘In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization and continuation of the recent results on this issue.In the end,an example is given to show the application of the results.
基金National Natural Science Foundation of China(No.10971139)
文摘A fixed point analysis approach is used to investigate the existence of mild solutions of second order semilinear impulsive delay integrodifferential equations with nonlocal conditions.Without imposing compactness condition on the cosine family of operators,we give some sufficient conditions for the existence of mild solutions of such system.Finally,an example is presented to illustrate the utility of the proposed result.The results improve some recent results.
文摘In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.
基金supported by NSF of China (11171110)Shanghai Leading Academic Discipline Project (B407)
文摘In this article, by using theory of linear evolution system and Schauder fixed point theorem, we establish a sufficient result of exact null controllability for a non-autonomous functional evolution system with nonlocal conditions. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is also provided to show an application of the obtained result.
文摘In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
文摘This paper deals with the existence,uniqueness and continuous dependence of mild solutions for a class of conformable fractional differential equations with nonlocal initial conditions.The results are obtained by means of the classical fixed point theorems combined with the theory of cosine family of linear operators.
文摘In this paper we examine the controllability problems of certain evolution equations with nonlocal conditions. Using the Schaefer fixed-point theorem, we obtain sufficient conditions for controllability and we give an application.
文摘In this paper,we are concerned with the controllability of damped second-order integrodifferential systems with impulses.Further the result is extended to study the controllability of nonlinear neutral systems with nonlocal conditions.The fixed point analysis approach is adopted in investigation.Sufficient conditions are formulated with a noncompact condition on the cosine family of operators.The results are obtained using the Banach fixed point theorem.An example is presented to illustrate the results.
基金Dr.Arthi was supported by University Grant Commission(UGC),India(No.G2/1287/UGC SAP DRS/2009)
文摘In this paper, we establish a set of sufficient conditions for the controllability of damped second-order impulsive neutral integrodifferential systems with nonlocal initial conditions in Banach spaces. The approach used is the Sadovskii fixed point theorem combined with a noncompact condition on the cosine family of operators. An example is oresented to illustrate the result.
文摘This paper is concerned with the approximate controllability of nonlinear fractional impulsive neutral stochastic integro-differential equations with nonlocal conditions and infinite delay in Hilbert spaces under the assumptions that the corresponding linear system is approximately controllable. By the Krasnoselskii-Schaefer-type fixed point theorem and stochastic analysis theory, some sufficient conditions are given for the approximate controllability of the system. At the end, an example is given to illustrate the application of our result.
基金This research is supported by the National 973 Program(2002CB312205).
文摘In this paper we examine controllability problems of evolution inclusions with nonlocal conditions. Using Kakutani's fixed point theorem and Schauder's fixed point the-orem, we establish sufficient conditions for the controllability under convex and nonconvex orientor fields respectively.
基金supported by NNSF of China (No.10371040)Shanghai Priority Academic Discipline
文摘In this paper,using a fixed point theorem for condensing multi-valued maps,we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.
文摘In this paper, using the theory of resolvent operators, Banach,s contraction prin-ciple and Schauder,s fixed point theorem, we study the existence of integral solutions to semilinear integrodifferential equations under nonlocal conditions in Banach space. An example is provided to illustrate the results obtained.
基金supported by University Grant Commission (UGC), India (No. G2/1287/UGC SAP DRS/2009)
文摘In this paper, we establish sufficient conditions for the controllability of a class of semilinear impulsive integrodifferential systems with nonlocal initial conditions in Banach spaces. We derive the conditions using Hausdorff measure of noncompactness, Sadovskii fixed point theorem and operator semigroups in particular dropping compactness of the operator.
基金Supported by the National Natural Science Foundation of China(11161049)
文摘In this paper, we investigate the nonlinear fractional difference equation with nonlocal fractional boundary conditions. We derive the Green's function for this problem and show that it satisfies certain properties. Some existence results are obtained by means of nonlinear alternative of Leray-Schauder type theorem and Krasnosel-skii's fixed point theorem.
文摘The existence,uniqueness,and continuous dependence to the mild solutions of the nonlocal Cauchy problem were proved for a class of semilinear fractional neutral differential equations.The results are obtained by using the Krasnoselskii's fixed point theorem and the theory of resolvent operators for integral equations.
文摘In this work, a highly efficient algorithm is developed for solving the parabolic partial differential equation (PDE) with the nonlocal condition. For this purpose, we employ orthogonal Chelyshkov polynomials as the basis. The convergence analysis of the proposed scheme is derived. Numerical experiments are carried out to explain the efficiency and precision of the proposed scheme. Furthermore, the reliability of the scheme is verified by comparisons with assured existing methods.
基金supported in part by NSF of China(11001189),supported by NSF of China(11371384)supported in part by NSF of Chongqing(cstc2013jcyjA0940)in part by NSF of Fuling(FLKJ,2013ABA2036)
文摘This article deals with the global existence and blow-up of positive solution of a nonlinear diffusion equation with nonlocal source and nonlocal nonlinear boundary condition. We investigate the influence of the reaction terms, the weight functions and the nonlinear terms in the boundary conditions on global existence and blow up for this equation. Moreover, we establish blow-up rate estimates under some appropriate hypotheses.
基金The NSF (10771085) of Chinathe 985 Program of Jilin University
文摘This paper deals with an evolution p-Laplace equation with nonlocal source subject to weighted nonlocal Dirichlet boundary conditions. We give sufficient conditions for the existence of global and non-global solutions.