Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As...Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.展开更多
We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary i...We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.展开更多
One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so...One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so that the non-negative inverse persists. The largest interval is given by which the diagonal entries of the inverse of tridiagonal M-matrices can be perturbed without losing the property of total nonnegativity. A numerical example is given to illustrate our findings.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor...High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor analysis(NLFA)model can perform representation learning to HDI data efficiently.However,existing NLFA models suffer from either slow convergence rate or representation accuracy loss.To address this issue,this paper proposes a proximal alternating-directionmethod-of-multipliers-based nonnegative latent factor analysis(PAN)model with two-fold ideas:(1)adopting the principle of alternating-direction-method-of-multipliers to implement an efficient learning scheme for fast convergence and high computational efficiency;and(2)incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to HDI data.Theoretical studies verify that PAN converges to a Karush-KuhnTucker(KKT)stationary point of its nonnegativity-constrained learning objective with its learning scheme.Experimental results on eight HDI matrices from real applications demonstrate that the proposed PAN model outperforms several state-of-the-art models in both estimation accuracy for missing data of an HDI matrix and computational efficiency.展开更多
Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlat...Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence ...Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.展开更多
Two theorems are proved. They are with principal significance in functional analysis, for they imply some well known theorems, such as the open mapping theorem, the closed graph theorem and the Banach Steinhaus theo...Two theorems are proved. They are with principal significance in functional analysis, for they imply some well known theorems, such as the open mapping theorem, the closed graph theorem and the Banach Steinhaus theorem.展开更多
Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and ...Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and sufficient conditions on Ω and f(x) which ensure the existence, or multiplicities of nonnegative solutions for the problem under consideration.展开更多
Nonnegative matrix factorization(NMF)has shown good performances on blind audio source separation(BASS).While the NMF analysis is a non-convex optimization problem when both the basis and encoding matrices need to be ...Nonnegative matrix factorization(NMF)has shown good performances on blind audio source separation(BASS).While the NMF analysis is a non-convex optimization problem when both the basis and encoding matrices need to be estimated simultaneously,the source separation step of the NMF-based BASS with a fixed basis matrix has been considered convex.However,because the basis matrix for the BASS is typically constructed by concatenating the basis matrices trained with individual source signals,the subspace spanned by the basis vectors for one source may overlap with that for other sources.In this paper,we have shown that the resulting encoding vector is not unique when the subspaces spanned by basis vectors for the sources overlap,which implies that the initialization of the encoding vector in the source separation stage is not trivial.Furthermore,we propose a novel method to initialize the encoding vector for the separation step based on the prior model of the encoding vector.Experimental results showed that the proposed method outperformed the uniform random initialization by 1.09 and 2.21dB in the source-to-distortion ratio,and 0.20 and 0.23 in PESQ scores for supervised and semi-supervised cases,respectively.展开更多
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina...The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).展开更多
Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow ...Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow convergence under the anharmonic vibration circumstance occurred in the field of mechanical fault diagnosis. To decompose a large-scale tensor and extract available bispectrum feature, a method of conjugating Choi-Williams kernel function with Gauss-Newton Cartesian product based on nonnegative Tucker3 decomposition(NTD_EDF) is investigated. The complexity of the proposed method is reduced from o(nNlgn) in 3D spaces to o(RiR2nlgn) in 1D vectors due to its low rank form of the Tucker-product convolution. Meanwhile, a simultaneously updating algorithm is given to overcome the overfitting, slow convergence and low efficiency existing in the conventional one-by-one updating algorithm. Furthermore, the technique of spectral phase analysis for quadratic coupling estimation is used to explain the feature spectrum extracted from the gearbox fault data by the proposed method in detail. The simulated and experimental results show that the sparser and more inerratic feature distribution of basis images can be obtained with core tensor by the NTD EDF method compared with the one by the other methods in bispectrum feature extraction, and a legible fault expression can also be performed by power spectral density(PSD) function. Besides, the deviations of successive relative error(DSRE) of NTD_EDF achieves 81.66 dB against 15.17 dB by beta-divergences based on NTD(NTD_Beta) and the time-cost of NTD EDF is only 129.3 s, which is far less than 1 747.9 s by hierarchical alternative least square based on NTD (NTD_HALS). The NTD_EDF method proposed not only avoids the data overfitting and improves the computation efficiency but also can be used to extract more inerratic and sparser bispectrum features of the gearbox fault.展开更多
A new inequality on the minimum eigenvalue for the Fan product of nonsingular M-matrices is given. In addition, a new inequality on the spectral radius of the Hadamard product of nonnegative matrices is also obtained....A new inequality on the minimum eigenvalue for the Fan product of nonsingular M-matrices is given. In addition, a new inequality on the spectral radius of the Hadamard product of nonnegative matrices is also obtained. These inequalities can improve considerably some previous results.展开更多
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop...This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.展开更多
Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegati...Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegative nontrivial spike-layer solutions and positive intermediate spike-layer solutions. Moreover, the upper and lower bound on the measure of each spike-layer were estimated when the parameter is sufficiently small.展开更多
Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively...Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.展开更多
基金supported by the Natural Science Foundation of China(NSFC)under grant 11501436Young Talent fund of University Association for Science and Technology in Shaanxi,China(20170701)
文摘Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.
文摘We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.
文摘One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so that the non-negative inverse persists. The largest interval is given by which the diagonal entries of the inverse of tridiagonal M-matrices can be perturbed without losing the property of total nonnegativity. A numerical example is given to illustrate our findings.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金supported by the National Natural Science Foundation of China(62272078,U21A2019)the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the CAAI-Huawei MindSpore Open Fund(CAAIXSJLJJ-2021-035A)。
文摘High-dimensional and incomplete(HDI)data subject to the nonnegativity constraints are commonly encountered in a big data-related application concerning the interactions among numerous nodes.A nonnegative latent factor analysis(NLFA)model can perform representation learning to HDI data efficiently.However,existing NLFA models suffer from either slow convergence rate or representation accuracy loss.To address this issue,this paper proposes a proximal alternating-directionmethod-of-multipliers-based nonnegative latent factor analysis(PAN)model with two-fold ideas:(1)adopting the principle of alternating-direction-method-of-multipliers to implement an efficient learning scheme for fast convergence and high computational efficiency;and(2)incorporating the proximal regularization into the learning scheme to suppress the optimization fluctuation for high representation learning accuracy to HDI data.Theoretical studies verify that PAN converges to a Karush-KuhnTucker(KKT)stationary point of its nonnegativity-constrained learning objective with its learning scheme.Experimental results on eight HDI matrices from real applications demonstrate that the proposed PAN model outperforms several state-of-the-art models in both estimation accuracy for missing data of an HDI matrix and computational efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62162040 and 11861045)。
文摘Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
基金Supported by National Key Research and Development Program of China(2016YFF0201005)。
文摘Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.
文摘Two theorems are proved. They are with principal significance in functional analysis, for they imply some well known theorems, such as the open mapping theorem, the closed graph theorem and the Banach Steinhaus theorem.
基金This work is supported by NNSF of China (10171029).
文摘Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and sufficient conditions on Ω and f(x) which ensure the existence, or multiplicities of nonnegative solutions for the problem under consideration.
基金supported by the research fund of Signal Intelligence Research Center supervised by the Defense Acquisition Program Administration and Agency for Defense Development of Korea
文摘Nonnegative matrix factorization(NMF)has shown good performances on blind audio source separation(BASS).While the NMF analysis is a non-convex optimization problem when both the basis and encoding matrices need to be estimated simultaneously,the source separation step of the NMF-based BASS with a fixed basis matrix has been considered convex.However,because the basis matrix for the BASS is typically constructed by concatenating the basis matrices trained with individual source signals,the subspace spanned by the basis vectors for one source may overlap with that for other sources.In this paper,we have shown that the resulting encoding vector is not unique when the subspaces spanned by basis vectors for the sources overlap,which implies that the initialization of the encoding vector in the source separation stage is not trivial.Furthermore,we propose a novel method to initialize the encoding vector for the separation step based on the prior model of the encoding vector.Experimental results showed that the proposed method outperformed the uniform random initialization by 1.09 and 2.21dB in the source-to-distortion ratio,and 0.20 and 0.23 in PESQ scores for supervised and semi-supervised cases,respectively.
基金L’Ore´al-UNESCO for the Women in Science Maghreb Program Grant Agreement No.4500410340.
文摘The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).
基金supported by National Natural Science Foundation of China(Grant Nos.50875048,51175079,51075069)
文摘Nonnegative Tucker3 decomposition(NTD) has attracted lots of attentions for its good performance in 3D data array analysis. However, further research is still necessary to solve the problems of overfitting and slow convergence under the anharmonic vibration circumstance occurred in the field of mechanical fault diagnosis. To decompose a large-scale tensor and extract available bispectrum feature, a method of conjugating Choi-Williams kernel function with Gauss-Newton Cartesian product based on nonnegative Tucker3 decomposition(NTD_EDF) is investigated. The complexity of the proposed method is reduced from o(nNlgn) in 3D spaces to o(RiR2nlgn) in 1D vectors due to its low rank form of the Tucker-product convolution. Meanwhile, a simultaneously updating algorithm is given to overcome the overfitting, slow convergence and low efficiency existing in the conventional one-by-one updating algorithm. Furthermore, the technique of spectral phase analysis for quadratic coupling estimation is used to explain the feature spectrum extracted from the gearbox fault data by the proposed method in detail. The simulated and experimental results show that the sparser and more inerratic feature distribution of basis images can be obtained with core tensor by the NTD EDF method compared with the one by the other methods in bispectrum feature extraction, and a legible fault expression can also be performed by power spectral density(PSD) function. Besides, the deviations of successive relative error(DSRE) of NTD_EDF achieves 81.66 dB against 15.17 dB by beta-divergences based on NTD(NTD_Beta) and the time-cost of NTD EDF is only 129.3 s, which is far less than 1 747.9 s by hierarchical alternative least square based on NTD (NTD_HALS). The NTD_EDF method proposed not only avoids the data overfitting and improves the computation efficiency but also can be used to extract more inerratic and sparser bispectrum features of the gearbox fault.
文摘A new inequality on the minimum eigenvalue for the Fan product of nonsingular M-matrices is given. In addition, a new inequality on the spectral radius of the Hadamard product of nonnegative matrices is also obtained. These inequalities can improve considerably some previous results.
基金Supported by the National Natural Science Foundation of China ( No. 60872083 ) and the National High Technology Research and Development Program of China (No. 2007AA12Z149).
文摘This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.
文摘Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegative nontrivial spike-layer solutions and positive intermediate spike-layer solutions. Moreover, the upper and lower bound on the measure of each spike-layer were estimated when the parameter is sufficiently small.
基金Supported by the National Natural Science Foundation of China(61374140,61403072)
文摘Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.