As a promising physical layer technique, nonorthogonal multiple access(NOMA) can admit multiple users over the same space-time resource block, and thus improve the spectral efficiency and increase the number of access...As a promising physical layer technique, nonorthogonal multiple access(NOMA) can admit multiple users over the same space-time resource block, and thus improve the spectral efficiency and increase the number of access users. Specifically, NOMA provides a feasible solution to massive Internet of Things(IoT) in 5G and beyond-5G wireless networks over a limited radio spectrum. However, severe co-channel interference and high implementation complexity hinder its application in practical systems. To solve these problems, multiple-antenna techniques have been widely used in NOMA systems by exploiting the benefits of spatial degrees of freedom. This study provides a comprehensive review of various multiple-antenna techniques in NOMA systems, with an emphasis on spatial interference cancellation and complexity reduction. In particular, we provide a detailed investigation on multiple-antenna techniques in two-user, multiuser, massive connectivity, and heterogeneous NOMA systems.Finally, future research directions and challenges are identified.展开更多
Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Pro...Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.展开更多
The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance th...The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.展开更多
Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attract...Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.展开更多
基金the National Natural Science Founda-tion of China(No.61871344)the Zhejiang Provincial Natural Science Foundation of China(No.LR20F010002)+1 种基金the National Science and Technology Major Project of China(No.2018ZX03001017-002)the National Key R&D Programof China (No. 2018YFB1801104)。
文摘As a promising physical layer technique, nonorthogonal multiple access(NOMA) can admit multiple users over the same space-time resource block, and thus improve the spectral efficiency and increase the number of access users. Specifically, NOMA provides a feasible solution to massive Internet of Things(IoT) in 5G and beyond-5G wireless networks over a limited radio spectrum. However, severe co-channel interference and high implementation complexity hinder its application in practical systems. To solve these problems, multiple-antenna techniques have been widely used in NOMA systems by exploiting the benefits of spatial degrees of freedom. This study provides a comprehensive review of various multiple-antenna techniques in NOMA systems, with an emphasis on spatial interference cancellation and complexity reduction. In particular, we provide a detailed investigation on multiple-antenna techniques in two-user, multiuser, massive connectivity, and heterogeneous NOMA systems.Finally, future research directions and challenges are identified.
基金supported by the National Key Research and Development Program of China(No.2017YFB0403403)the Natural Science Foundation of Guangdong Province(No.2015A030312006).
文摘Although Successive Interference Cancellation(SIC)decoding is widely adopted in Nonorthogonal Multiple Access(NOMA)schemes for the recovery of user data at acceptable complexity,the imperfect SIC would cause Error Propagation(EP),which can severely degrade system performance.In this work,we propose an SIC-free NOMA scheme in pulse modulation based Visible Light Communication(VLC)downlinks,including two types of users with different data rate requirements.Low bit-rate users adopt on-off keying,whereas high bit-rate ones use Multiple Pulse Position Modulation(MPPM).The soft decision decoding scheme is exploited by high bit-rate users to decode MPPM signals,which could fundamentally eliminate the detrimental effect of EP;the scheme is also easier and faster to execute compared with the conventional SIC decoding scheme.Expressions of the symbol error rate and achievable data rate for two types of users are derived.Results of the Monte Carlo simulation are provided to confirm the correctness of theoretical results.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62271099。
文摘The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61701201,U1805262,61871446 and 62071247the Natural Science Foundation of Jiangsu Province(No.BK20170758),Six talent peaks project in Jiangsu Province.
文摘Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.