The author studies the metric spaces with operator norm localization property. It is proved that the operator norm localization property is coarsely invariant and is preserved under certain infinite union. In the case...The author studies the metric spaces with operator norm localization property. It is proved that the operator norm localization property is coarsely invariant and is preserved under certain infinite union. In the case of finitely generated groups, the operator norm localization property is also preserved under the direct limits.展开更多
In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining fu...In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10901033)the Shanghai Phosphor Science Foundation (No. 07SG38)+1 种基金the Shanghai Pujiang Program (No. 08PJ14006)the Fundamental Research Funds for the Central Universities
文摘The author studies the metric spaces with operator norm localization property. It is proved that the operator norm localization property is coarsely invariant and is preserved under certain infinite union. In the case of finitely generated groups, the operator norm localization property is also preserved under the direct limits.
基金Supported by the Scientific Research Foundation for the Doctor,Nanjing University of Aeronautics and Astronautics(No.1008-907359)
文摘In this paper, we apply the symmetric Galerkin methods to the numerical solutions of a kind of singular linear two-point boundary value problems. We estimate the error in the maximum norm. For the sake of obtaining full superconvergence uniformly at all nodal points, we introduce local mesh refinements. Then we extend these results to a class of nonlinear problems. Finally, we present some numerical results which confirm our theoretical conclusions.