For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine...For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.展开更多
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
In this paper, we establish the maximum norm estimates of the solutions of the finite volume element method (FVE) based on the P1 conforming element for the non-selfadjoint and indefinite elliptic problems.
In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can n...In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.展开更多
高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间...高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。展开更多
本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Mult...本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)高效求解,并通过实验结果验证了该方法的优越性。展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
基金supported by Aeronautical Science Foundation of China (No. 20100251006)Technological Foundation Project of China (No. J132012C001)
文摘For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金The Major State Basic Research Program (19871051) of China and the NNSP (19972039) of China.
文摘In this paper, we establish the maximum norm estimates of the solutions of the finite volume element method (FVE) based on the P1 conforming element for the non-selfadjoint and indefinite elliptic problems.
基金Sponsored by the National"Eleventh-five"Tackle Key Problem Program-China Science and Technology Support Project(Grant No.2006BAJ01A04)
文摘In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision.
文摘高光谱和多光谱图像融合旨在获取同时具有高空间分辨率和高光谱分辨率的高质量图像。然而,针对光谱变化中的高光谱和多光谱图像融合问题,全变分正则化方法仅仅是在空间梯度域对图像局部特性信息进行建模,没有考虑高光谱图像光谱信息间的高阶相关性。针对上述问题,通过引入Schatten-0正则项,实现对光谱信息高阶相关性的建模,提出基于Schatten-0范数正则化的高光谱和多光谱图像融合方法。采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)求解光谱变化中的融合问题。其中,Schatten-0正则项对应的子问题采用硬阈值迭代收缩算法求解。仿真实验验证了所提方法的可行性和有效性。可为更具有实际价值、更一般化的高光谱和多光谱图像融合应用提供理论与技术支撑。
文摘本文提出了一个超声图像复原模型,该模型融合了加权核范数最小化和数据保真度。加权核范数最小化能够自适应处理奇异值以保留图像细节,数据保真度则增强了图像复原效果。本研究采用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)高效求解,并通过实验结果验证了该方法的优越性。
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.