The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to con...The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper.展开更多
As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo a...As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.展开更多
To enhance the accuracy of intuitionistic fuzzy time series forecasting model, this paper analyses the influence of universe of discourse partition and compares with relevant literature. Traditional models usually par...To enhance the accuracy of intuitionistic fuzzy time series forecasting model, this paper analyses the influence of universe of discourse partition and compares with relevant literature. Traditional models usually partition the global universe of discourse, which is not appropriate for all objectives. For example, the universe of the secular trend model is continuously variational. In addition, most forecasting methods rely on prior information, i.e., fuzzy relationship groups (FRG). Numerous relationship groups lead to the explosive growth of relationship library in a linear model and increase the computational complexity. To overcome problems above and ascertain an appropriate order, an intuitionistic fuzzy time series forecasting model based on order decision and adaptive partition algorithm is proposed. By forecasting the vector operator matrix, the proposed model can adjust partitions and intervals adaptively. The proposed model is tested on student enrollments of Alabama dataset, typical seasonal dataset Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and a secular trend dataset of total retail sales for social consumer goods in China. Experimental results illustrate the validity and applicability of the proposed method for different patterns of dataset.展开更多
Boundary Element Method (BEM) is widely used in electrocardiographic (ECG) problem. Formulations of these problems based on mathematical and numerical approximations of the known source in heart and the volume conduct...Boundary Element Method (BEM) is widely used in electrocardiographic (ECG) problem. Formulations of these problems based on mathematical and numerical approximations of the known source in heart and the volume conductor that can transfer voltages on the surface of the body. To analyze the electric potentials on body surface or epicardial surface, a set of discrete equations derived from a boundary integral equations need to be solved. Solving these equations means to get the potential distribution eventually. In the process of solving, transfer matrix of discrete equations has received considerable attention, how to get an appropriate transfer matrix is an important issue. This paper found that the direction of normal vector could affect the results when calculating the transfer matrix and presents a method analogous to Mesh Current Method to deal with this direction problem. Several simulations have been carried out to verify the accurate results with the correct direction of normal vector using new method within a torso model given simultaneous epicardial and body surface potential recordings.展开更多
基金Characteristic Innovation Projects of Ordinary Universities of Guangdong Province,China(No.2022KTSCX150)Zhaoqing Education Development Institute Project,China(No.ZQJYY2021144)Zhaoqing College Quality Project and Teaching Reform Project,China(Nos.zlgc202003 and zlgc202112)。
文摘The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper.
文摘As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.
基金supported by the National Natural Science Foundation of China(61309022)
文摘To enhance the accuracy of intuitionistic fuzzy time series forecasting model, this paper analyses the influence of universe of discourse partition and compares with relevant literature. Traditional models usually partition the global universe of discourse, which is not appropriate for all objectives. For example, the universe of the secular trend model is continuously variational. In addition, most forecasting methods rely on prior information, i.e., fuzzy relationship groups (FRG). Numerous relationship groups lead to the explosive growth of relationship library in a linear model and increase the computational complexity. To overcome problems above and ascertain an appropriate order, an intuitionistic fuzzy time series forecasting model based on order decision and adaptive partition algorithm is proposed. By forecasting the vector operator matrix, the proposed model can adjust partitions and intervals adaptively. The proposed model is tested on student enrollments of Alabama dataset, typical seasonal dataset Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and a secular trend dataset of total retail sales for social consumer goods in China. Experimental results illustrate the validity and applicability of the proposed method for different patterns of dataset.
文摘Boundary Element Method (BEM) is widely used in electrocardiographic (ECG) problem. Formulations of these problems based on mathematical and numerical approximations of the known source in heart and the volume conductor that can transfer voltages on the surface of the body. To analyze the electric potentials on body surface or epicardial surface, a set of discrete equations derived from a boundary integral equations need to be solved. Solving these equations means to get the potential distribution eventually. In the process of solving, transfer matrix of discrete equations has received considerable attention, how to get an appropriate transfer matrix is an important issue. This paper found that the direction of normal vector could affect the results when calculating the transfer matrix and presents a method analogous to Mesh Current Method to deal with this direction problem. Several simulations have been carried out to verify the accurate results with the correct direction of normal vector using new method within a torso model given simultaneous epicardial and body surface potential recordings.