Three point-like massive particles/atoms are connected with three springs forming an equilateral triangle replicating a prototype triatomic molecule. The triangle is inscribed within a stationary frame via three addit...Three point-like massive particles/atoms are connected with three springs forming an equilateral triangle replicating a prototype triatomic molecule. The triangle is inscribed within a stationary frame via three additional springs confining the vibrations of the molecule to a 2D space. It is the objective of this research flavored investigation to seek the normal vibrational modes for this three-body six-spring structure. The entire analysis including symbolic, numeric, and graphics is carried out by adapting a suitable Computer Algebra System (CAS), Mathematica. For a comprehensive understanding, the frequency of the normal mode is used for a visual animation;an actual mechanical replica of the “molecule” for the scenario on hand is fabricated.展开更多
Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and conclude...Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and concludes from the results that there is an electric dipole transition between X 1A g and a 1B 3u (singlet singlet) excited states belonging to D 2h group symmetry, and discusses the vibrational energy levels and emission spectra calculates for this transition.展开更多
An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomizatio...An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.展开更多
文摘Three point-like massive particles/atoms are connected with three springs forming an equilateral triangle replicating a prototype triatomic molecule. The triangle is inscribed within a stationary frame via three additional springs confining the vibrations of the molecule to a 2D space. It is the objective of this research flavored investigation to seek the normal vibrational modes for this three-body six-spring structure. The entire analysis including symbolic, numeric, and graphics is carried out by adapting a suitable Computer Algebra System (CAS), Mathematica. For a comprehensive understanding, the frequency of the normal mode is used for a visual animation;an actual mechanical replica of the “molecule” for the scenario on hand is fabricated.
文摘Presents the ab initio calculations performed for different symmetry groups of neutral molecular N 2 dimer, and the calculation of ground state and low lying singlet excited states for each symmetry group and concludes from the results that there is an electric dipole transition between X 1A g and a 1B 3u (singlet singlet) excited states belonging to D 2h group symmetry, and discusses the vibrational energy levels and emission spectra calculates for this transition.
基金This work was supported by the National Natural Science Foundation of China (No.10676025) and the Research Fund of the Education Bureau of Gansu Province of China (No.3ZS061-A25-029).
文摘An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.