In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dyna...In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.展开更多
文摘In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.