In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential pol...In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.展开更多
Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is...Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .展开更多
By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has a...Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.展开更多
Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy ...Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy some conditions.展开更多
We studied the normality criterion for families of meromorphic functions which related to One-way sharing set, and obtain two normal criterions, which improve the previous results.
Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated...Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated, that is, h · f = g · h, in this paper, we will show that z ∈ J(f) if and only if h(z) ∈ J(g) ( similarly, z F(f) if and only ifh(z) ∈ F(g)), and this extends a result of Bergweiler.展开更多
In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by...In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by the properties of permutable transcendental entire functions, we prove that if f and g are permutable transcendental entire functions, then mes (J(f)) = mes (J(g)). Moreover, we give some results about the zero measure of the Julia sets of the permutable transcendental entire functions family.展开更多
We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H...We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].展开更多
Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, a...Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.展开更多
In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent...In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.展开更多
This paper proves a result that if two entire functions f(z) and g(z) share four small functions aj(z) (j = 1,2,3,4) in the sense of Ek)(aj, f) = Ek)(aj,g), (j = 1,2,3,4) (k ≥ 11), then there exists f(z) = g(z).
In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of h...Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.展开更多
In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive intege...In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.展开更多
We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are ...We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).展开更多
This article studies the problem of uniqueness of two entire or meromorphic functions whose differential polynomials share a finite set. The results extend and improve on some theorems given in [3].
In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obta...In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.展开更多
In this paper,we deal with the uniqueness problems on entire functions concerning differential polynomials that share one small function.Moreover,we improve some former results of M Fang and W Lin.
Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or...Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or a transcendental singularity) of f if there exists a curve Г : [0, 1) → C such that limt→1 F(t) = ∞ and limt→1(f o Г)(t) = a. In this paper we find relations between the asymptotic values of f, 9 and f o 9, relations between critical points of f, 9 and f o 9 and also in the case when the two functions f and 9 are semi-conjugated with another entire function.展开更多
文摘In this paper,we study normal families of meromorphic functions.By using the idea in[11],we obtain some normality criteria for families of meromorphic functions that concern the number of zeros of the differential polynomial,which extends the related result of Li,and Chen et al..An example is given to show that the hypothesis on the zeros of a(z)is necessary.
文摘Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(fg)=J(f n g m) for any positive integers n and m . Then we prove that the function h(p(z))+az ∈/ B , where h(z) is any transcendental entire function with h′(z)=0 having infinitely many solutions, p(z) is a polynomial with deg p ≥2 and a(≠0) ∈ C .
基金Sponsored by the NSFC (10871076)the RFDP (20050574002)
文摘By using the definition of Hausdorff distance, we prove some normality criteria for families of meromorphic algebroid functions. Some examples are given to complement the theory in this article.
文摘Let k be a positive integer,let h(z)■0 be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l.If,for each f∈P(f)(z)-h(z) has at most k+l-1 distinct zeros(ignoring multiplicity) in D,where P(f)(z)=f(k)(z)+a1(z)f((k-1)(z)+…+ak(z)f(z) is a differential polynomial of f and aj(z)(j=1,2,···,k) are holomorphic functions in D,then F is normal in D.
基金Supported by National Natural Science Foundation of China(1080113410625107)
文摘Based on the work of McMullen about the continuity of Julia set for rational functions, in this paper, we discuss the continuity of Julia set and its Hausdorff dimension for a family of entire functions which satisfy some conditions.
文摘We studied the normality criterion for families of meromorphic functions which related to One-way sharing set, and obtain two normal criterions, which improve the previous results.
文摘Suppose that f and g are two transcendental entire functions, and h is a non-constant periodic entire function. We denote the Julia set and Fatou set off by J(f) and F(f), respectively, lffand g are semiconjugated, that is, h · f = g · h, in this paper, we will show that z ∈ J(f) if and only if h(z) ∈ J(g) ( similarly, z F(f) if and only ifh(z) ∈ F(g)), and this extends a result of Bergweiler.
文摘In 1958, Baker posed the question that if f and g are two permutable transcendental entire functions, must their Julia sets be the same? In order to study this problem of permutable transcendental entire functions, by the properties of permutable transcendental entire functions, we prove that if f and g are permutable transcendental entire functions, then mes (J(f)) = mes (J(g)). Moreover, we give some results about the zero measure of the Julia sets of the permutable transcendental entire functions family.
基金supported by NSF of Fujian Province,China(S0750013),supported by NSF of Fujian Province,China(2008J0190)the Research Foundation of Ningde Normal University(2008J001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘We deal with the problem of entire functions sharing one value weakly. Moreover, we improve and generalize some former results obtained by J.-F.Chen, et al. [6], Y.Xu and H.L.Qiu [4], M.L. Fang [5], C.C. Yang, and X.H. Hua [3].
基金Supported by the NNSF of China(11071083)the Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.
文摘In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.
文摘This paper proves a result that if two entire functions f(z) and g(z) share four small functions aj(z) (j = 1,2,3,4) in the sense of Ek)(aj, f) = Ek)(aj,g), (j = 1,2,3,4) (k ≥ 11), then there exists f(z) = g(z).
文摘In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
基金The NNSF (19871050) the RFDP (98042209) of China.
文摘Let f be a holomorphic function on a domain D (?) C, and let a be a finite complex number. We denote by Ef(α) = {z∈ D : f(z) = a, ignoring multiplicity} the set of all distinct α-points of f. Let F be a family of holomorphic functions on D. If there exist three finite values a, b(≠ 0, a) and c(≠0) such that for every f ∈ F, Ef(0) (?) Ef'(a) and Ef'(b)(?) Ef(c), then F is a normal family on D.
文摘In this paper, we study the normality criteria of meromorphic functions concerning shared fixed-points, we obtain: Let F be a family of meromorphic functions defined in a domain D. Let n, k ≥ 2 be two positive integers. For every f ∈ F, all of whose zeros have multiplicity at least (nk+2)/(n-1). If f(f(k))nand g(g(k))nshare z in D for each pair of functions f and g, then F is normal.
文摘We study the uniqueness of entire functions and prove the following theorem: Let f(z) and g(z) be two nonconstant entire functions; n and k two positive integers with n>2k+4. If the zeros of both f(z) and g(z) are of multiplicity at least n, and f (k)(z) and g (k)(z) share 1 CM, then either f(z)=c 1e cz, g(z)= c 2e -cz, where c 1, c 2 and c are three constants satisfying (-1) kc 1c 2c 2k= 1, or f(z)≡g(z).
文摘This article studies the problem of uniqueness of two entire or meromorphic functions whose differential polynomials share a finite set. The results extend and improve on some theorems given in [3].
文摘In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth are obtained in terms of approximation and interpolation errors.
文摘In this paper,we deal with the uniqueness problems on entire functions concerning differential polynomials that share one small function.Moreover,we improve some former results of M Fang and W Lin.
基金This paper is a main talk on the held in Nanjing, P. R. China, July, 2004.
文摘Let f be an entire function. A point Zo is called a critical point of f if f′(zo) = O, and f(zo) is called a critical value (or an algebraic singularity) of f. Next a ∈ C is said to be an asymptotic value (or a transcendental singularity) of f if there exists a curve Г : [0, 1) → C such that limt→1 F(t) = ∞ and limt→1(f o Г)(t) = a. In this paper we find relations between the asymptotic values of f, 9 and f o 9, relations between critical points of f, 9 and f o 9 and also in the case when the two functions f and 9 are semi-conjugated with another entire function.