期刊文献+
共找到855篇文章
< 1 2 43 >
每页显示 20 50 100
Assessment of vegetation cover changes and the contributing factors in the Al-Ahsa Oasis using Normalized Difference Vegetation Index(NDVI)
1
作者 Walid CHOUARI 《Regional Sustainability》 2024年第1期42-53,共12页
The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ... The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis. 展开更多
关键词 normalized difference vegetation index(ndvi) vegetation cover Ecological environment Land use and land cover(LULC) Urban expansion Al-Ahsa Oasis
下载PDF
Interannual Variability of the Normalized Difference Vegetation Index on the Tibetan Plateau and Its Relationship with Climate Change 被引量:24
2
作者 周定文 范广洲 +3 位作者 黄荣辉 方之芳 刘雅勤 李洪权 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第3期474-484,共11页
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly... The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability. 展开更多
关键词 Tibetan Plateau normalized difference vegetation index (ndvi ECOSYSTEM climate change interannual variability
下载PDF
Retrospective analysis of two northern California wild-land fires via Landsat five satellite imagery and Normalized Difference Vegetation Index (NDVI) 被引量:1
3
作者 Bennett Sall Michael W. Jenkins James Pushnik 《Open Journal of Ecology》 2013年第4期311-323,共13页
Wild-land fires are a dynamic and destructive force in natural ecosystems. In recent decades, fire disturbances have increased concerns and awareness over significant economic loss and landscape change. The focus of t... Wild-land fires are a dynamic and destructive force in natural ecosystems. In recent decades, fire disturbances have increased concerns and awareness over significant economic loss and landscape change. The focus of this research was to study two northern California wild-land fires: Butte Humboldt Complex and Butte Lightning Complex of 2008 and assessment of vegetation recovery after the fires via ground based measurements and utilization of Landsat 5 imagery and analysis software to assess landscape change. Multi-temporal and burn severity dynamics and assessment through satellite imagery were used to visually ascertain levels of landscape change, under two temporal scales. Visual interpretation indicated noticeable levels of landscape change and relevant insight into the magnitude and impact of both wild-land fires. Normalized Burn Ratio (NBR) and delta NBR (DNBR) data allowed for quantitative analysis of burn severity levels. DNBR results indicate low severity and low re-growth for Butte Humboldt Complex “burned center” subplots. In contrast, DNBR values for Butte Lightning Complex “burned center” subplots indicated low-moderate burn severity levels. 展开更多
关键词 Wild-Land Fire BURN Severity vegetation Recovery normalized difference vegetATIVE index (ndvi) normalized BURN Ratio (NBR)
下载PDF
Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor 被引量:2
4
作者 Jae-Hyun RYU Dohyeok OH Jaeil CHO 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第7期1969-1986,共18页
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref... A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions. 展开更多
关键词 photochemical reflectance index normalized difference vegetation index vegetation remote sensing spectral reflectance sensor
下载PDF
Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index and Standardized Precipitation Index 被引量:1
5
作者 Ayad M F AL-QURAISHI Heman A GAZNAYEE Mattia CRESPI 《Journal of Arid Land》 SCIE CSCD 2021年第4期413-430,共18页
Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdi... Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdistan Region(IKR)is located in the north of Iraq,which has also suffered from extreme drought.In this study,the drought severity status in Sulaimaniyah Province,one of four provinces of the IKR,was investigated for the years from 1998 to 2017.Thus,Landsat time series dataset,including 40 images,were downloaded and used in this study.The Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index(NDWI)were utilized as spectral-based drought indices and the Standardized Precipitation Index(SPI)was employed as a meteorological-based drought index,to assess the drought severity and analyse the changes of vegetative cover and water bodies.The study area experienced precipitation deficiency and severe drought in 1999,2000,2008,2009,and 2012.Study findings also revealed a drop in the vegetative cover by 33.3%in the year 2000.Furthermore,the most significant shrinkage in water bodies was observed in the Lake Darbandikhan(LDK),which lost 40.5%of its total surface area in 2009.The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK(correlation coefficients of 0.92 and 0.72,respectively).The relationship between SPI and NDVI-based vegetation cover was positive but not significant.Low precipitation did not always correspond to vegetative drought;the delay of the effect of precipitation on NDVI was one year. 展开更多
关键词 climate change DROUGHT normalized difference vegetation index(ndvi) normalized difference Water index(NDWI) Standardized Precipitation index(SPI) delay effect
下载PDF
Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China
6
作者 LU Qing KANG Haili +2 位作者 ZHANG Fuqing XIA Yuanping YAN Bing 《Journal of Arid Land》 SCIE CSCD 2024年第8期1080-1097,共18页
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio... The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity. 展开更多
关键词 growing season normalized difference vegetation index(ndvi) highland vegetation trend analysis partial correlation analysis residual analysis contribution rate
下载PDF
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
7
作者 SUN Chao BAI Xuelian +2 位作者 WANG Xinping ZHAO Wenzhi WEI Lemin 《Journal of Arid Land》 SCIE CSCD 2024年第8期1044-1061,共18页
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime... Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins. 展开更多
关键词 vegetation variation climate change land use change normalized difference vegetation index(ndvi) enhanced vegetation index(EVI) Shiyang River Basin
下载PDF
Drivers,Trends,and Patterns of Changing Vegetation-greenness in Nansha Islands,China from 2016 to 2022
8
作者 TANG Jiasheng FU Dongjie +2 位作者 SU Fenzhen YU Hao WANG Xinhui 《Chinese Geographical Science》 SCIE CSCD 2024年第4期662-673,共12页
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ... Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative. 展开更多
关键词 island and reefs(IRs) normalized difference vegetation index(ndvi) vegetation-greenness change-rate Sen's slope Nansha Islands China
下载PDF
Climate-Vegetation Coverage Interactions in the Hengduan Mountains Area, Southeastern Tibetan Plateau, and Their Downstream Effects
9
作者 Congxi FANG Jinlei CHEN +4 位作者 Chaojun OUYANG Lu WANG Changfeng SUN Quan ZHANG Jun WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期701-716,共16页
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ... Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate. 展开更多
关键词 Hengduan Mountains Area normalized difference vegetation index climate change net heat flux downstream effects
下载PDF
Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023
10
作者 YAN Yujie CHENG Yiben +3 位作者 XIN Zhiming ZHOU Junyu ZHOU Mengyao WANG Xiaoyu 《Journal of Arid Land》 SCIE CSCD 2024年第8期1062-1079,共18页
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the... The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau. 展开更多
关键词 kernel normalized difference vegetation index(kndvi) human activities climate change partial correlation analysis composite correlation analysis residual analysis Mongolian Plateau
下载PDF
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
11
作者 ZHAO Lili LI Lusheng +4 位作者 LI Yanbin ZHONG Huayu ZHANG Fang ZHU Junzhen DING Yibo 《Journal of Arid Land》 SCIE CSCD 2023年第12期1421-1438,共18页
The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo... The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms. 展开更多
关键词 vegetation drought vegetation Drought Condition index(VDCI) normalized difference vegetation index(ndvi) vegetation dynamics climate change China
下载PDF
基于无人机多光谱NDVI值估测玉米产量
12
作者 张磊 姚梦瑶 +8 位作者 刘志刚 李娟 杨洋 蔡大润 陈果 李波 李晓荣 陈勋基 翟云龙 《新疆农业科学》 CAS CSCD 北大核心 2024年第4期845-851,共7页
【目的】研究基于UAS-8无人机采集数据,运用归一化植被指数(Normalized Difference Vegetation Index)模型估测玉米产量,为大田无人机多光谱预测玉米产量提供理论依据。【方法】以新疆18份春播玉米为研究对象,获取开花期多光谱图像,经... 【目的】研究基于UAS-8无人机采集数据,运用归一化植被指数(Normalized Difference Vegetation Index)模型估测玉米产量,为大田无人机多光谱预测玉米产量提供理论依据。【方法】以新疆18份春播玉米为研究对象,获取开花期多光谱图像,经过辐射校正、大气校正、建立掩膜、提取NDVI图,计算植被覆盖率,得到区光谱反射率和归一化植被指数实际数值,将NDVI值与田间实测产量值进行模型拟合。【结果】幂函数Y=23411.46-10997.99/X(R^(2)=0.4886),二次函数为Y=39003.00-117963.03X+103130.25X 2(R^(2)=0.562),正反比函数(Inverse Proportional Function)为Y 2=2840.5 X/(1-X)(R^(2)=0.495),利用偏最小二乘回归(Partial Least Squares Regression),其线性函数Y=24458.22X-9620.55(R^(2)=0.521)。【结论】在数值0.5~0.8区间,NDVI与玉米产量具有较高的相关性,线性函数方程NDVI值可预测玉米的产量。 展开更多
关键词 玉米 产量 归一化植被指数(ndvi) 偏最小二乘回归(PLSR)
下载PDF
高寒气候区生长季NDVI与昼夜不对称增温的Copula分析
13
作者 李忠良 何光鑫 李勋 《大气科学学报》 CSCD 北大核心 2024年第3期407-424,共18页
利用1982—2016年的青海地区归一化植被指数和气象数据,基于马尔科夫链蒙特卡罗的Copula函数方法,深入探索昼夜增温不对称性与植被活动之间的复杂关系,揭示了昼夜增温和NDVI之间的联合概率分布及其季节性差异。研究结果表明,昼夜增温与N... 利用1982—2016年的青海地区归一化植被指数和气象数据,基于马尔科夫链蒙特卡罗的Copula函数方法,深入探索昼夜增温不对称性与植被活动之间的复杂关系,揭示了昼夜增温和NDVI之间的联合概率分布及其季节性差异。研究结果表明,昼夜增温与NDVI之间的关系在不同季节呈现显著差异。尤其在秋季,昼夜增温对NDVI的影响最为显著,其次是夏季和春季。通过Copula函数模型,发现昼夜增温与NDVI在特定温度区间内呈现正相关,表明适宜的温度条件下昼夜增温对植被生长具有促进作用。然而,当昼夜增温超过某一阈值时,其对NDVI的促进作用转变为抑制作用,从而限制了植被的生长。同时,还揭示了重现期与昼夜增温及NDVI之间的关系。在较低的重现期下,昼夜增温与NDVI的联合概率较高,表明在这些条件下,植被生长良好的情况出现的频率较高。反之,较高的重现期对应于昼夜增温与NDVI较低的联合概率,表明植被生长受到抑制。本研究通过Copula函数提供了一个全新的视角来理解昼夜增温与植被动态之间的相互作用,强调了气温变化对植被生长影响的复杂性。 展开更多
关键词 昼夜增温 归一化植被指数(ndvi) 非对称性增温 COPULA 重现期
下载PDF
2000—2021年渭河流域NDVI变化及其影响因素
14
作者 封建民 刘宇峰 +1 位作者 郭玲霞 文琦 《湖北农业科学》 2024年第5期22-29,共8页
渭河流域是黄河中游重要的生态涵养地,同时也是黄土高原水土流失的典型区域,监测该地区植被生长变化趋势,并分析其与气候变化和人类活动的关系,对科学评估区域生态建设成效、黄土高原植被恢复和生态修复具有重要意义。基于2000—2021年... 渭河流域是黄河中游重要的生态涵养地,同时也是黄土高原水土流失的典型区域,监测该地区植被生长变化趋势,并分析其与气候变化和人类活动的关系,对科学评估区域生态建设成效、黄土高原植被恢复和生态修复具有重要意义。基于2000—2021年归一化植被指数(NDVI)、气温、降水量、人口密度、土地利用数据,分析了渭河流域NDVI的时空变化特征,探究了气候变化和人类活动对NDVI变化趋势的影响。结果表明,2000—2021年,渭河流域植被生长季NDVI呈增加趋势,全区年平均增速为0.004。年际尺度上,NDVI与年平均降水量呈正相关关系,与年平均气温的相关性不显著;月尺度上,NDVI与4月和8月的气温、降水量均呈正相关关系,与7月气温呈弱的负相关关系。人口密度变化与NDVI变化趋势呈负相关,流域人口密度的减小有利于植被的恢复和改善。土地利用类型内部变化是植被NDVI变化的主要原因。NDVI显著减少区NDVI的减少趋势主要由关中平原耕地NDVI的减少引起,NDVI显著增加区NDVI的增加趋势主要由草地、林地以及黄土丘陵区、黄土残塬区耕地NDVI的增加引起。 展开更多
关键词 归一化植被指数(ndvi) 气候 人口密度 土地利用 渭河流域
下载PDF
基于时空数据融合的塔吉克斯坦中高时空分辨率NDVI数据集(2010-2020)
15
作者 高超 任小丽 +4 位作者 曾纳 张心昱 张黎 何洪林 刘畅 《中国科学数据(中英文网络版)》 CSCD 2024年第3期12-20,共9页
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是研究植被最常用的遥感指数之一。NDVI长时间序列数据对于植被变化研究有着重要的意义。然而由于传感器的限制,遥感数据的时间分辨率与空间分辨率不能兼顾,因此在目前广... 归一化植被指数(Normalized Difference Vegetation Index,NDVI)是研究植被最常用的遥感指数之一。NDVI长时间序列数据对于植被变化研究有着重要的意义。然而由于传感器的限制,遥感数据的时间分辨率与空间分辨率不能兼顾,因此在目前广泛使用的NDVI数据产品中,高时空分辨率的数据还较为缺乏。本产品基于Cubist模型对MODIS数据与Landsat及哨兵等遥感数据进行时空数据融合,得到了塔吉克斯坦2010–2020年中高时空分辨率Landsat-MODIS融合数据,以及2020年中高时空分辨率Sentinel-MODIS融合数据。为保证数据的准确性和可靠性,本数据集从数据源的质控,模型训练优化,以及模型独立验证三个方面对数据产品进行质量控制,且取得了较好的验证效果。本数据集可反映塔吉克斯坦2010–2020年NDVI时空变化情况,可为该地区植被变化分析、生态环境监测等提供长时间序列数据支撑。 展开更多
关键词 归一化植被指数 塔吉克斯坦 时空数据融合 遥感产品
下载PDF
中亚地区2001-2020年250 m及2020年30 m分辨率植被生长季NDVI数据集
16
作者 高超 任小丽 +4 位作者 曾纳 刘畅 张心昱 张黎 何洪林 《中国科学数据(中英文网络版)》 CSCD 2024年第3期1-11,共11页
中亚地区是北半球最大的干旱和半干旱区,其生态环境十分脆弱,对全球气候变化的响应较为敏感。由于该区域的特殊地理位置,维护该区域生态系统的稳定对全球经济社会发展至关重要。植被具有重要的生态环境指示作用,其时空分布格局和变化趋... 中亚地区是北半球最大的干旱和半干旱区,其生态环境十分脆弱,对全球气候变化的响应较为敏感。由于该区域的特殊地理位置,维护该区域生态系统的稳定对全球经济社会发展至关重要。植被具有重要的生态环境指示作用,其时空分布格局和变化趋势是评估区域生态状况的重要指标。归一化植被指数(Normalized Difference Vegetation Index,NDVI)作为研究植被最常用的遥感指数之一,能够表征植被的时空变化特征。本数据集利用MODIS13Q1产品生成了中亚地区2001–2020年长时间序列空间分辨率为250 m的生长季均值NDVI数据,并使用基于规则的分段回归Cubist算法,结合Landsat数据,融合得到了能够更好表征地物细节的30 m空间分辨率的2020年生长季均值NDVI数据。同时,本数据集从数据源的质控,模型训练优化,以及模型独立验证三个方面对数据产品进行质量控制,以确保数据的精度和可靠性。本数据集的生成为中亚地区植被动态变化和空间格局的分析提供了有力的数据支持。 展开更多
关键词 归一化植被指数 中亚 多源遥感数据融合 遥感产品
下载PDF
基于MODIS-NDVI数据的延河流域植被覆盖时空变化及其对极端降水的响应 被引量:1
17
作者 张明颖 郝利娜 +1 位作者 钟佳悦 李佳琴 《湖南城市学院学报(自然科学版)》 CAS 2024年第1期62-67,共6页
基于2010-2020年MODIS-NDVI数据,分析延河流域归一化植被指数(normalizeddifference vegetation index,NDVI)和极端降水指数,辅以利用Sen趋势分析、M-K趋势检验法、Pearson相关分析等方法,研究植被覆盖时空变化及其对极端降水的响应。... 基于2010-2020年MODIS-NDVI数据,分析延河流域归一化植被指数(normalizeddifference vegetation index,NDVI)和极端降水指数,辅以利用Sen趋势分析、M-K趋势检验法、Pearson相关分析等方法,研究植被覆盖时空变化及其对极端降水的响应。结果表明:1)2010-2020年,延河流域NDVI呈显著增加趋势,植被覆盖状况逐年改善,其增加速率为0.073/(10 a)(P<0.001);2)空间上,延河流域NDVI呈现从东南到西北减小的布局;3)趋势上,NDVI呈上升和减小趋势的面积占比分别为98.02%和1.98%,整体呈上升趋势,植被覆盖显著改善;4)近11年极端降水指数总体趋势变化平缓,R20(number of very heavy precipitation days)、RX_(5day)(max5-day precipitation amount)、CDD(consecutive dry Days)和CWD(consecutive wet days)呈上升趋势,R_(95P)(very wet day precipitation)和SDII(simple daily intensity index)呈下降趋势;5)NDVI与极端降水指数的相关性整体上偏低,除SDII外,其余指数都与NDVI正相关,且NDVI与RX_(5day)相关性最强,与R20相关性最弱。 展开更多
关键词 ndvi 极端降水指数 趋势分析 相关分析 延河流域
下载PDF
Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China 被引量:4
18
作者 Peng LI Luguang JIANG +2 位作者 Zhiming FENG Sage SHELDON Xiangming XIAO 《Frontiers of Earth Science》 CSCD 2016年第2期303-314,共12页
Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is... Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renorma- lized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice typeis in the period of growth (RNDVI 〈 0) or senescence (RNDVI 〉 0). 展开更多
关键词 normalized difference vegetation index(ndvi Renormalized index of ndvi (Rndvi) ricecropping systems PHENOLOGY temporal windows PoyangLake Region (PLR)
原文传递
基于绿视率和NDVI的城市街道景观分析与优化研究
19
作者 苏雷 陈伟峰 +2 位作者 李俊英 周燕 樊磊 《西北林学院学报》 CSCD 北大核心 2024年第2期256-264,共9页
街道景观空间对市民健康和城市风貌具有重要影响。既往研究中常以归一化植被指数(NDVI)和绿视率(GVI)来分别代表二维和三维的绿色指标,但对二者的指标相关性研究甚少。采用基于深度学习的图像语义分割方法分析百度街景计算代表性街道的G... 街道景观空间对市民健康和城市风貌具有重要影响。既往研究中常以归一化植被指数(NDVI)和绿视率(GVI)来分别代表二维和三维的绿色指标,但对二者的指标相关性研究甚少。采用基于深度学习的图像语义分割方法分析百度街景计算代表性街道的GVI,利用GF-1卫星数据计算NDVI,比较分析城市街道的GVI和NDVI指标特征及相关性。结果表明,1)中山市中心城区各代表街道GVI指标参差不齐,从8.06%到36.00%,其中石岐街道兴中道GVI最高;2)各街道观测点的NDVI均值随着缓冲区尺度的增加也随之呈现出不同变化,NDVI均值具有强烈的尺度敏感性;3)50 m GVI和DNVI均值的皮尔逊相关系数最高,达到0.832。在此基础上分析街道景观存在的不足并给出优化建议,为城市街景评估、空间优化、景观提升提供参考。 展开更多
关键词 绿视率(GVI) 街景地图 归一化植被指数(ndvi) 深度学习 景观优化
下载PDF
1961-2020年黄河流域干燥度时空变化及其对植被NDVI的影响
20
作者 申露婷 姬兴杰 +2 位作者 朱业玉 田宏伟 刘美 《气象与环境学报》 2024年第3期106-114,共9页
基于黄河流域224个气象站点1961—2020年气象数据和2000—2020年MODIS的归一化植被指数(NDVI)数据,分析干燥度时空分布规律及其对NDVI的影响。结果表明:1961—2020年黄河流域年平均干燥度气候倾向率为-0.03·(10 a)^(-1),其多年平... 基于黄河流域224个气象站点1961—2020年气象数据和2000—2020年MODIS的归一化植被指数(NDVI)数据,分析干燥度时空分布规律及其对NDVI的影响。结果表明:1961—2020年黄河流域年平均干燥度气候倾向率为-0.03·(10 a)^(-1),其多年平均值为2.56;从各站变化的区域分布看,黄河流域北部站点变化以下降为主(52.2%),中部以南站点以上升为主(41.5%)。在空间上,黄河流域干燥度总体呈西北高、东南低,表现为上游(3.74)>中游(1.99)>下游(1.74),上游地区包含干旱亚区、半干旱亚区和半湿润亚区,中游和下游地区大多为半湿润亚区。逐步回归分析显示,干燥度主要受降水量的影响,大部分地区年均干燥度减少是由太阳总辐射减少、降水量增加和气温降低造成的。2000—2020年黄河流域NDVI平均值为0.30,在空间上整体呈东南高、西北低,上游较小、下游最高;与干燥度呈极显著负相关(r=-0.52,P<0.01,n=224),特别是在上中游地区。 展开更多
关键词 黄河流域 干燥度 归一化植被指数(ndvi)
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部