We consider the inverse spectral problem for a singular Sturm-Liouville operator with Coulomb potential. In this paper, we give an asymptotic formula and some properties for this problem by using methods of Trubowitz ...We consider the inverse spectral problem for a singular Sturm-Liouville operator with Coulomb potential. In this paper, we give an asymptotic formula and some properties for this problem by using methods of Trubowitz and Poschel.展开更多
In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we ...In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we extend some classic results for regular Sturm-Liouville problems and obtain asymptotic approximate formulae for eigenvalues and normalized eigenfunctions. We modify some techniques of [Fulton, C. T., Proc. Roy. Soc. Edin. 77 (A), 293-308 (1977)], [Walter, J., Math. Z., 133, 301-312 (1973)] and [Titchmarsh, E. C., Eigenfunctions Expansion Associated with Second Order Differential Equations I, 2nd edn., Oxford Univ. Pres, London, 1962], then by using these techniques we obtain asymptotic formulae for eigenelement norms and normalized eigenfunctions.展开更多
文摘We consider the inverse spectral problem for a singular Sturm-Liouville operator with Coulomb potential. In this paper, we give an asymptotic formula and some properties for this problem by using methods of Trubowitz and Poschel.
文摘In this paper, discontinuous Sturm-Liouville problems, which contain eigenvalue parameters both in the equation and in one of the boundary conditions, are investigated. By using an operatortheoretic interpretation we extend some classic results for regular Sturm-Liouville problems and obtain asymptotic approximate formulae for eigenvalues and normalized eigenfunctions. We modify some techniques of [Fulton, C. T., Proc. Roy. Soc. Edin. 77 (A), 293-308 (1977)], [Walter, J., Math. Z., 133, 301-312 (1973)] and [Titchmarsh, E. C., Eigenfunctions Expansion Associated with Second Order Differential Equations I, 2nd edn., Oxford Univ. Pres, London, 1962], then by using these techniques we obtain asymptotic formulae for eigenelement norms and normalized eigenfunctions.