High-quality zircon U-Pb ages acquired from Meso- and Neoproterozoic strata in North China in recent years has provided a high-resolution chronostratigraphic framework for dating. A basis of this high-level chronostra...High-quality zircon U-Pb ages acquired from Meso- and Neoproterozoic strata in North China in recent years has provided a high-resolution chronostratigraphic framework for dating. A basis of this high-level chronostratigraphic system provides the foundation for a global Precambrian study and stratigraphic correlation and so recent geological studies have focused attention on systemic SHRIMP zircon dating. A chronology of Meso- and Neoproterozoic strata and the time of origin of the overlying Changcheng System is given on the basis of new SHRIMP zircon dating from the Qianxi Complex and diabase of the Chuanlinggou Formation. A new tectonostratigraphy for a Neoproterozoic chronostratigraphic framework in the southeastern margin of the North China continent is underpinned by the new SHRIMP zircon dating of a Neoproterozoic mafic magma diabase in the Jiao-Liao-Xu-Huai Sub-Province.展开更多
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities...Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.展开更多
The North China rift zone,including the North China Plain rift zone and the middle Shanxi graben-rift zone,is a continental rift;geomorphologically,its most common and important characteristics are the multiple accord...The North China rift zone,including the North China Plain rift zone and the middle Shanxi graben-rift zone,is a continental rift;geomorphologically,its most common and important characteristics are the multiple accordant summit levels (ASLs) in the denudational area.In this study three methods based on geomorphic analysis,that is,(1) unified topographic profiles,(2) cyclic knickpoints along longitudinal river profiles,and (3) depth contours of river downcutting,are used to identify the ASLs and analyze their tectonic deformation.The formation time of the ASLs is determined by geological and geomorphological evidence,the correlation with the sedimentary facies in the Plain rift zone,and K-Ar ages of basalts on the ASLs,indicating the rates of tectonic uplift.The North China rift zone has five ASLs,of which the highest and oldest ASL I is the remnant of a fossil peneplain formed before rifting and the other four lower and younger ones are pediplain-typed formed contemporaneously with rifting.Study of展开更多
In this paper, based on the large scale uplift, lateral inhomogeneity and low interface velocity along the Moho as well as the soft low velocity layer under it obtained from deep seismic sounding (DSS), we deduced tha...In this paper, based on the large scale uplift, lateral inhomogeneity and low interface velocity along the Moho as well as the soft low velocity layer under it obtained from deep seismic sounding (DSS), we deduced that the southern region of North China Plain is characterized by continental rift and abnormal mantle in the lithosphere.Summarizing geological and geophysical data, we try to state that the forming and developing of abnormal mantle and the intermittent activity of asthenosphere are the dynamic sources to dominate the geologic structure and tectonic movement in this region. We also point out that the research of deep process is important to probe timespace law of earthquake occurrence.展开更多
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a...The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic-Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.展开更多
Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such...Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such as tensile deformation, thermal uplift, and cooling subsidence, etc.. Integrated with thermal, gravimetric, and isostatic analysis techniques, based on the seismic interpretation of the deep penetration seismic soundings across the northern margin of the South China Sea, we reconstructed the lithospheric thermal structure and derived the variation of the crust boundary in the east and west parts of the seismic profile by using gravity anomaly data. We mainly studied the thermal isostasy problems using the bathymetry of the profiles and calculated the crust thinning effect due to the thermal variety in the rifting process. The results indicate that the thermal isostasy may reach 2.5 km, and the compositional variations in the lithospheric density and thickness may produce a variation of 4.0 km. Therefore, the compositional isostatic correction is very important to recover the relationship between surface heat flow and topography. Moreover, because of the high heat flow characteristic of the continental margin, building the model of lithospheric geotherm in this region is of great importan for studying the Cenozoic tectonic thermal evolution of the north passive continental margin of the South China Sea.展开更多
文摘High-quality zircon U-Pb ages acquired from Meso- and Neoproterozoic strata in North China in recent years has provided a high-resolution chronostratigraphic framework for dating. A basis of this high-level chronostratigraphic system provides the foundation for a global Precambrian study and stratigraphic correlation and so recent geological studies have focused attention on systemic SHRIMP zircon dating. A chronology of Meso- and Neoproterozoic strata and the time of origin of the overlying Changcheng System is given on the basis of new SHRIMP zircon dating from the Qianxi Complex and diabase of the Chuanlinggou Formation. A new tectonostratigraphy for a Neoproterozoic chronostratigraphic framework in the southeastern margin of the North China continent is underpinned by the new SHRIMP zircon dating of a Neoproterozoic mafic magma diabase in the Jiao-Liao-Xu-Huai Sub-Province.
文摘Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.
文摘The North China rift zone,including the North China Plain rift zone and the middle Shanxi graben-rift zone,is a continental rift;geomorphologically,its most common and important characteristics are the multiple accordant summit levels (ASLs) in the denudational area.In this study three methods based on geomorphic analysis,that is,(1) unified topographic profiles,(2) cyclic knickpoints along longitudinal river profiles,and (3) depth contours of river downcutting,are used to identify the ASLs and analyze their tectonic deformation.The formation time of the ASLs is determined by geological and geomorphological evidence,the correlation with the sedimentary facies in the Plain rift zone,and K-Ar ages of basalts on the ASLs,indicating the rates of tectonic uplift.The North China rift zone has five ASLs,of which the highest and oldest ASL I is the remnant of a fossil peneplain formed before rifting and the other four lower and younger ones are pediplain-typed formed contemporaneously with rifting.Study of
文摘In this paper, based on the large scale uplift, lateral inhomogeneity and low interface velocity along the Moho as well as the soft low velocity layer under it obtained from deep seismic sounding (DSS), we deduced that the southern region of North China Plain is characterized by continental rift and abnormal mantle in the lithosphere.Summarizing geological and geophysical data, we try to state that the forming and developing of abnormal mantle and the intermittent activity of asthenosphere are the dynamic sources to dominate the geologic structure and tectonic movement in this region. We also point out that the research of deep process is important to probe timespace law of earthquake occurrence.
文摘The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic-Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic-Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.
基金supported by the CAS Knowledge Innovation Program (No. KZCX2-YW-203-01)the National Basic Research Program of China (No. G2007CB41170404)
文摘Accompanied with rifting and detaching of the north continental margin of the South China Sea, the crust and the lithosphere become thinner away from the continental margin resulting from the tectonic activities, such as tensile deformation, thermal uplift, and cooling subsidence, etc.. Integrated with thermal, gravimetric, and isostatic analysis techniques, based on the seismic interpretation of the deep penetration seismic soundings across the northern margin of the South China Sea, we reconstructed the lithospheric thermal structure and derived the variation of the crust boundary in the east and west parts of the seismic profile by using gravity anomaly data. We mainly studied the thermal isostasy problems using the bathymetry of the profiles and calculated the crust thinning effect due to the thermal variety in the rifting process. The results indicate that the thermal isostasy may reach 2.5 km, and the compositional variations in the lithospheric density and thickness may produce a variation of 4.0 km. Therefore, the compositional isostatic correction is very important to recover the relationship between surface heat flow and topography. Moreover, because of the high heat flow characteristic of the continental margin, building the model of lithospheric geotherm in this region is of great importan for studying the Cenozoic tectonic thermal evolution of the north passive continental margin of the South China Sea.