Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagn...Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model.展开更多
In the early 1980s, Chinese meteorologists discovered the positive correlation in summer rainfall between India and North China and the correlation was later confirmed by some researches in and outside China. Based on...In the early 1980s, Chinese meteorologists discovered the positive correlation in summer rainfall between India and North China and the correlation was later confirmed by some researches in and outside China. Based on a variety of meteorological data from 1951 to 2005 and numerical simulations, the present study investigates such a correlation between Indian summer monsoon (ISM) and precipitation in North China. Furthermore, we discuss the intrinsic relations of the positive (Northwest India)-negative (the Tibetan Plateau)-positive (North China) precipitation anomaly teleconnection pattern from two aspects of thermal and dynamical factors, which not only confirms the precipitation teleconnection previously discovered again, but also reveals the influence mechanism of the ISM on the rainfall in North China. The results show that: (1) When the ISM is strong (weak), the precipitation in North China tends to be more (less) than normal; however, when the rainfall in North China is more (less) than normal, the probability of the strengthening (weakening) of the ISM is relatively lower. This implies that the ISM anomaly has more impact on the rainfall in North China. (2) The Indian low usually dominantly impacts the intensity of the ISM. When the Indian low deepens, the low troughs in mid-high latitudes are frequently strengthened, and the ridge of the western Pacific subtropical high (WPSH) extends westward. The southwesterly water vapor transport originated from low-latitudes and the southeasterly water vapor transport along the southwestern flank of the WPSH converge in North China, which is favorable for more rainfall there than normal, and vice versa. (3) The simulations from the regional climate model developed by National Climate Center (ReGCM_NCC) capture the salient feature of the precipitation teleconnection between India and North China. The simulated anomalous atmospheric existence of such a teleconnection from another circulations are close to observations, which confirms the angle.展开更多
The analyses have been made of the summer precipitation data over Indian and North China during 1891—1983.The statistic results show that the climatic characteristics of the Indian summer monsoon rainfall are similar...The analyses have been made of the summer precipitation data over Indian and North China during 1891—1983.The statistic results show that the climatic characteristics of the Indian summer monsoon rainfall are similar to summer rainfall in North China,and a steady and significant positive correlation exists be- tween them. The circulation systems associated with the Indian monsoon and the rainfall in North China in summer have also been discussed.It is found that there are same predictors in April to be used for the forecast of North China rainfall and Indian monsoon.展开更多
利用国家气候中心160站月平均降水资料、印度热带气象研究所的全印度月平均降水资料和NCEP/NCAR的再分析资料,从年际和年代际角度分别研究了欧亚遥相关型(Eurasian teleconnection,EU)对印度夏季风与华北夏季降水关系的影响,并探究其物...利用国家气候中心160站月平均降水资料、印度热带气象研究所的全印度月平均降水资料和NCEP/NCAR的再分析资料,从年际和年代际角度分别研究了欧亚遥相关型(Eurasian teleconnection,EU)对印度夏季风与华北夏季降水关系的影响,并探究其物理机制。结果表明,EU与印度夏季风之间的相关系数只有-0.078,二者相互独立。印度夏季风与华北夏季降水有正相关关系(Indian Summer Monsoon and North China Summer Rainfall,ISM-NCSR),且在正EU位相时,ISM-NCSR关系较弱;负EU位相时,ISM-NCSR关系较强。这是由于EU负位相时,贝加尔湖右侧存在反气旋环流,有利于北风及冷空气南下。因此,强印度季风时北上的暖湿气流在华北地区与偏北风相遇形成锋面,有利于华北降水;弱印度季风时华北地区完全被强北风控制,水汽输送通道被阻断,不利于降水,从而导致ISM-NCSR关系强。正EU位相时与此相反,相关关系弱。展开更多
The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal preci...The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal precipitationin East China is analysed. The analysis shows that the south branch of jetstream is stronger (weaker) in winter, therainfall will be more (less) than normal in the subsequent spring in South China, and summer rainfall in North Chinawill be more (less). too; these important rainy seasons are related to each other; the indian summer monsoon is notonly related to the summer rainfall in North China, but also related to the spring rainfall in South China and thesouth branch of jetstream in winter.展开更多
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analy...The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41305057, 41275076, 41105069, and 41375081)the National Basic Research Program of China (Grant Nos.2010CB951903 and 2014CB953900)the LCS Youth Fund (2014)
文摘Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model.
基金Supported by the National Plan on Key Basic Research and Development (2006CB403604).
文摘In the early 1980s, Chinese meteorologists discovered the positive correlation in summer rainfall between India and North China and the correlation was later confirmed by some researches in and outside China. Based on a variety of meteorological data from 1951 to 2005 and numerical simulations, the present study investigates such a correlation between Indian summer monsoon (ISM) and precipitation in North China. Furthermore, we discuss the intrinsic relations of the positive (Northwest India)-negative (the Tibetan Plateau)-positive (North China) precipitation anomaly teleconnection pattern from two aspects of thermal and dynamical factors, which not only confirms the precipitation teleconnection previously discovered again, but also reveals the influence mechanism of the ISM on the rainfall in North China. The results show that: (1) When the ISM is strong (weak), the precipitation in North China tends to be more (less) than normal; however, when the rainfall in North China is more (less) than normal, the probability of the strengthening (weakening) of the ISM is relatively lower. This implies that the ISM anomaly has more impact on the rainfall in North China. (2) The Indian low usually dominantly impacts the intensity of the ISM. When the Indian low deepens, the low troughs in mid-high latitudes are frequently strengthened, and the ridge of the western Pacific subtropical high (WPSH) extends westward. The southwesterly water vapor transport originated from low-latitudes and the southeasterly water vapor transport along the southwestern flank of the WPSH converge in North China, which is favorable for more rainfall there than normal, and vice versa. (3) The simulations from the regional climate model developed by National Climate Center (ReGCM_NCC) capture the salient feature of the precipitation teleconnection between India and North China. The simulated anomalous atmospheric existence of such a teleconnection from another circulations are close to observations, which confirms the angle.
文摘The analyses have been made of the summer precipitation data over Indian and North China during 1891—1983.The statistic results show that the climatic characteristics of the Indian summer monsoon rainfall are similar to summer rainfall in North China,and a steady and significant positive correlation exists be- tween them. The circulation systems associated with the Indian monsoon and the rainfall in North China in summer have also been discussed.It is found that there are same predictors in April to be used for the forecast of North China rainfall and Indian monsoon.
文摘利用国家气候中心160站月平均降水资料、印度热带气象研究所的全印度月平均降水资料和NCEP/NCAR的再分析资料,从年际和年代际角度分别研究了欧亚遥相关型(Eurasian teleconnection,EU)对印度夏季风与华北夏季降水关系的影响,并探究其物理机制。结果表明,EU与印度夏季风之间的相关系数只有-0.078,二者相互独立。印度夏季风与华北夏季降水有正相关关系(Indian Summer Monsoon and North China Summer Rainfall,ISM-NCSR),且在正EU位相时,ISM-NCSR关系较弱;负EU位相时,ISM-NCSR关系较强。这是由于EU负位相时,贝加尔湖右侧存在反气旋环流,有利于北风及冷空气南下。因此,强印度季风时北上的暖湿气流在华北地区与偏北风相遇形成锋面,有利于华北降水;弱印度季风时华北地区完全被强北风控制,水汽输送通道被阻断,不利于降水,从而导致ISM-NCSR关系强。正EU位相时与此相反,相关关系弱。
文摘The monthly mean geostrophic wind fields for January during 1951 - 1990 period are calculated by using data of500 hpa monthly mean height. The relation between Asia jetstream in winter and the important seasonal precipitationin East China is analysed. The analysis shows that the south branch of jetstream is stronger (weaker) in winter, therainfall will be more (less) than normal in the subsequent spring in South China, and summer rainfall in North Chinawill be more (less). too; these important rainy seasons are related to each other; the indian summer monsoon is notonly related to the summer rainfall in North China, but also related to the spring rainfall in South China and thesouth branch of jetstream in winter.
基金Supported by the National Science and Technology Support Program (2007BAC03A01)the National Plan on Key Basic Research and Development (2006CB403604).
文摘The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The above four kinds of teleconnections reflect the links among the Asian monsoon subsystems of ISM, EASM, and WNPSM during the northward advancing march of the Asian summer monsoons.