A nested circulation model system based on the Princeton ocean model (POM) is set up to simulate the currentmeter data from a bottom-mounted Acoustic Doppler Profiler (ADP) deployed at the 30 m depth in the Lunan...A nested circulation model system based on the Princeton ocean model (POM) is set up to simulate the currentmeter data from a bottom-mounted Acoustic Doppler Profiler (ADP) deployed at the 30 m depth in the Lunan(South Shandong Province, China) Trough south of the Shandong Peninsula in the summer of 2008, and to study the dynamics of the circulation in the southwestern Huanghai Sea (Yellow Sea). The model has reproduced well the observed subtidal current at the mooring site. The results of the model simulation suggest that the bottom topography has strong steering effects on the regional circulation in summer. The model simulation shows that the Subei (North Jiangsu Province, China)coastal current flows north- ward in summer, in contrast to the southeastward current in the center of the Lunan Trough measured by the moored currentmeter. The analyses of the model results suggest that the southeastward current at the mooring site in the Lunan Trough is forced by the westward wind-driven current along the Lunan coast, which meets the northward Subei coastal current at the head of the Haizhou Bay to flow along an offshore path in the southeastward direction in the Lunan Trough. Analysis suggests that the Subei coastal current, the Lunan coastal current, and the circulation in the Lunan Trough are independent current systems con- trolled by different dynamics. Therefore, the current measurements in the Lunan Trough cannot be used to represent the Subei coastal current in general.展开更多
3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the se...3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.展开更多
The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: fi...The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high.At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.展开更多
基金The 973 Project of China under contract No.2012CB95600the National Natural Science Foundation of China under contract Nos 40888001 and 41176019+1 种基金the Chinese Academy of Sciences under contract No. KZCX2-YW-JS204Qingdao Municipal under contract No.10-3-3-38jh
文摘A nested circulation model system based on the Princeton ocean model (POM) is set up to simulate the currentmeter data from a bottom-mounted Acoustic Doppler Profiler (ADP) deployed at the 30 m depth in the Lunan(South Shandong Province, China) Trough south of the Shandong Peninsula in the summer of 2008, and to study the dynamics of the circulation in the southwestern Huanghai Sea (Yellow Sea). The model has reproduced well the observed subtidal current at the mooring site. The results of the model simulation suggest that the bottom topography has strong steering effects on the regional circulation in summer. The model simulation shows that the Subei (North Jiangsu Province, China)coastal current flows north- ward in summer, in contrast to the southeastward current in the center of the Lunan Trough measured by the moored currentmeter. The analyses of the model results suggest that the southeastward current at the mooring site in the Lunan Trough is forced by the westward wind-driven current along the Lunan coast, which meets the northward Subei coastal current at the head of the Haizhou Bay to flow along an offshore path in the southeastward direction in the Lunan Trough. Analysis suggests that the Subei coastal current, the Lunan coastal current, and the circulation in the Lunan Trough are independent current systems con- trolled by different dynamics. Therefore, the current measurements in the Lunan Trough cannot be used to represent the Subei coastal current in general.
基金The study (Project No. 85078) was supported by the Joint Foundation of Seismic Science.
文摘3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.
文摘The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high.At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.